∫∫x²y²zdxdy,其中∑是球面x² y² z²=R²
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:09:21
再问:极径r积分区域为什么是0
用y=x^2分区域为上下两部分D1和D2,原积分=∫∫D1(y-x^2)dxdy+∫∫D2(x^2-y)dxdy=∫(-1,1)dx∫(x^2,2)(y-x^2)dy+∫(-1,1)dx∫(0,x^2
再问:还没学高斯系数额,就用第一类曲面积分算法可以吗再答:这就是第一类曲面积分的算法。请参照二重积分中,计算曲面面积的方法,其中就有高斯系数。再问:请问倒数第二部a^4怎么出来变a^3了再答:这种解法
首先计算∫∫xdxdy,由于被积函数是关于x的奇函数,而积分区域关于y轴对称,所以∫∫xdxdy=0,原积分=∫∫(x^2+y^2)dxdy,用极坐标计算,=∫dθ∫r^3dr,(r积分限0到1,θ积
可以直接使用高斯公式:没问题的话麻烦采纳吧,/
这题的积分区域---圆域的圆心为(1/2,1/2),半径为(√2)/2因为圆心非原点,所以无论用直角坐标还是极坐标,上下限都不好确定.所以应想到把圆域平移到原点处,即用坐标变换.但二重积分的坐标变换涉
求曲面积分∫∫xdydz+y^2dzdx+zdxdy,其中Σ为平面上x+y+z=1被坐标平面所截的三角形的上侧.补面:Σ1:x=0,后侧Σ2:y=0,左侧Σ3:z=0,下侧∫∫(Σ+Σ1+Σ2+Σ3)
①.∫(2x+z)dydz中在dydz平面,要置换x=±√(z-y²),z保留,所以=∫(2√(z-y²)+z)(-dydz)至于(-dydz)中符号是因为区域S取后侧方向;②.后
为了利用高斯公式,将目标曲面补成封闭的曲面,且方向向外侧,最后积分值减去这一部分即可.目标曲面为半球面,补充半球面的底面部分,设为∑a.新形成的封闭曲面设为∑b.在底面时,z=0,dz=0.则:原积分
伙计这个(x-a)^2+(y-b)^2+(z-c)^2是球面吗?不是的,它是屁.令(x-a)^2+(y-b)^2+(z-c)^2=R^2才是,首先要加一个平面z=c取下侧面,才能用高斯公式原式=∫∫∫
补上两个面z=0与z=h,三个面上用高斯公式,得πh^3,z=0上的积分是0,z=h上的积分是πh^3,所以结果是0再问:为什么要补上z=0,根本没有用啊,这是圆锥面啊再答:那倒是,不用加再问:而且z
∵在区域D={(x,y)|x²+y²≤x,y≥0}中,1-x²-y²≥0∴∫∫|1-x²-y²|dxdy=∫∫(1-x²-y
直接用常规积分解比较繁琐,而且涉及到特殊形式积分,改为(r,θ)坐标,即∫∫4r^2drdθ,其中θ积分限为(0,2π),r为(0,1),这样积分得8/3πr^3|(0,1),结果为8/3π
这道题目打错了.y=y*sinv,应该是y=u*sinv方法是将其转化为第一型曲面积分.写为(Pcosa+Qcosb+Rcosy)ds的形式,然后用参数方程改写它.关键是写出参数方程下s的法向量以及d
化为二次积分(先对y积分)∫∫[y/(1+x^2+y^2)^(3/2)]dxdy=∫(0→1)dx∫(0→1)y/(1+x^2+y^2)^(3/2)dy(对y积分的原函数是-1/√(1+x^2+y^2
设x=rcosty=rsint-π/2
这题用高斯公式做简单,做辅助曲面S‘:z=0,则S+S'构成闭合曲面,取外侧为正.设P=(x^3+e^ysinz,Q=-3x^2y,R=z,则ðP/ðx=3x^2,ðQ/