∫∫xsin(y x)dxdy,其中D是由y=x,x=1,y=0所围成

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:34:43
∫∫xsin(y x)dxdy,其中D是由y=x,x=1,y=0所围成
d/dx∫[x^2→0]xsin(t^2)dt

d/dx∫[x^2→0]xsin(t^2)dt=∫[x^2→0]sin(t^2)dt-2(x^2)sin(x^4),(x^2是下限,是上限取+号)再问:求详细过程再答:1).∫[x^2→0]xsin(

求二重积分∫∫√(x2+y2)dxdy其中积分区域{(x,y)|x2+y2

用极坐标来解吧,令x=r*cosθ,y=r*sinθ那么显然√(x²+y²)=r,由x²+y²≤2x可以得到r²≤2r*cosθ即r≤2cosθ故r的

设T1=∫∫(x+y)^2dxdy T2=∫∫(x+y)^3dxdy 其中D为(x-2)^2+(y-1)^2

T1<T2首先T1=∫∫(x+y)^2dxdyT2=∫∫(x+y)^3dxdy.这两个相除(x+y).你仔细想一下,如果(x+y)始终>=1,或者始终<=1,那么就好判断了.因此现在问题就看在D范围内

计算二重积分∫∫|y-x^2|dxdy,其中区域D={(x,y)|-1

用y=x^2分区域为上下两部分D1和D2,原积分=∫∫D1(y-x^2)dxdy+∫∫D2(x^2-y)dxdy=∫(-1,1)dx∫(x^2,2)(y-x^2)dy+∫(-1,1)dx∫(0,x^2

求∫cos2x/cos^xsin^dx 的不定积分

∫(cos2x)/(cos²xsin²x)dx=∫(sin²x+cos²x)/(cos²xsin²x)dx=∫(1+tan²x)/

计算二重积分∫∫(X/1+XY)dxdy,D=[0,1]*[0,1]

【数学之美】团队为你解答,如果解决问题请采纳.

求定积分∫xsin^2x dx [-π/2,π/2]

解法一的(cos2x+1)/2dx应该是(1-cos2x)/2dx高手犯了个低级错误哦!sin^2x=(1-cos2x)/2

求二重积分∫∫xsin(y/x)dxdy,其中D是由y=x,x=1,y=0所围成的闭区域

I=∫∫xsin(y/x)dxdy=∫x^2dx∫sin(y/x)d(y/x)=(1-cos1)∫x^2dx=(1-cos1)/3.再问:这个公式我们没学过阿,只学过x型或者y型的,或者极坐标下的。我

计算∫∫D|cos(x+y)|dxdy,D:0

记O(0,0),A(π/2,0),B(π/2,π/2),C(0,π/2).则积分域D:为正方形OABC,连接AC,则在D1:△OAC内,x+y

∫ cos²xsin²x dx求积分步骤

答:你的解法当然不对了你自己把结果求导一下就知道是错误的你的结果求导是:2*(1/8)sin²2xcos2x=(1/4)cos2xsin²2x,不是积分函数

函数的奇偶性计算∫(1,-1)(根号x+xsin^2x)dx

因为奇偶函数在对称区间内的积分有性质:f(x)是奇函数,则∫(a,-a)f(x)dx=0f(x)是偶函数,则∫(a,-a)f(x)dx=∫(a,0)f(x)dx.f(x)=根号x+xsin^2x这个函

求∫ (cot^5 xsin^4 x) dx.

integralsin^4(x)cos^5(x)dx=(3sin(x))/128-1/192sin(3x)-1/320sin(5x)+(sin(7x))/1792+(sin(9x))/2304+C再问

求下列函数积分1)∫xsin^2xdx

详细积分过程,请见图片解答.点击放大,再点击再放大.

∫[cos2x/(cos²xsin²x)]dx等于多少?

原式=∫4cos2x/sin²2xdx=2∫cos2x/sin²2xd(2x)=2∫dsin2x/sin²2x=-2/sin2x+C再问:能把cos2x化成cos&sup

几道微积分题∫xsin(x^2)cos3(x^2)dx∫(cscx)^5dx

1、∫xsin(x^2)cos3(x^2)dx=(1/2)∫sin(x^2)cos3(x^2)dx^2=(1/4)∫[sin4(x^2)-sin2(x^2)]dx^2=(1/4)[∫sin4(x^2)

∫∫(x+y)dxdy,D:x^2+y^2

x^2+y^2=x+y化成标准式(x-1/2)^2+(y-1/2)^2=1/2x=1/2+rcosαy=1/2+rsinαα∈[0,2π]r∈[0,√2/2]∫∫(x+y)dxdy=∫∫(1+rcos

∫(xsin x)²dx 不定积分怎么求

∫(xsinx)²dx=Sx^2*(sinx)^2dx=Sx^2*(1-cos2x)/2dx=1/2*Sx^2dx-1/2*Sx^2cos2xdx=1/6*x^3-1/4*Sx^2dsin2