∫∫Dy(R²-x²)½dб,其中D为x²+y²≤R²,x≥0.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 20:56:23
d²x/dy²是导函数dx/dy关于y的导函数,但y'一般认为是dy/dx的记号,即y'=dy/dx,这时的y是关于x的函数,y'是该函数关于x的导函数,也是我们常见的、容易理解的
令u=x+y、du=dy∫(a→b)f(x+y)dy当y=a、u=x+a当y=b、u=x+b变为∫(x+a→x+b)f(u)du所以d/dx∫(a→b)f(x+y)dy=d/dx∫(x+a→x+b)f
设F'(x)=f(x)d/dx∫(下限a上限b)f(x+y)dy=d(F(b+x)-F(a+x))/dx=F'(b+x)-F'(a+x)=f(b+x)-f(a+x)
∫dy∫e^(-x^2)dx=-∫dy∫e^(-x^2)dx=-∫dx∫e^(-x^2)dy=-∫e^(-x^2)dx∫dy=-∫xe^(-x^2)dx=1/2e^(-x^2)=1/2(e^(-1)-
设y=2arctan(y/x),求dy/dx,d²y/dx².设F(x,y)=y-2arctan(y/x)=0,则dy/dx=-(∂F/∂x)/(ͦ
应用格林公式,第一个积分号的上下限为0和π,第二个积分号为0到2cos#,答案为1.5π再问:为什么是0到2cos#重点的过程
作极坐标变换,然后将正方形积分区域化成两个极坐标区域:无法求解析解了再问:先谢谢了。其实这个是求,x轴,y轴,x=R/2,y=R/2围成的第一挂限内平面区域,和球面z²+x²+y&
首先对于这样的第二类线性积分,参数方程很重要x=2(cost)^2y=2sint*costπ/4≤t≤π/2然后就用曲线积分公式你可以用这个思路再问:用格林公式怎么做
积分区域是上半圆,然后用极坐标做,原积分变为:-∫(0~π)dθ∫(0~r)e^(r*r)rdr分部积分很容易的
∫∫sin(y^2)dxdy=∫sin(y^2)dy∫dx=∫y*sin(y^2)dy=(1/2)∫sin(y^2)d(y^2)=(1/2)(cos0-cos1)=(1-cos1)/2.
这个结果应该是有问题得,如果说a是x和y得函数,那么结果应该是da/dx=ada/dy+da/dx再问:我连续遇见了三道同样的题只举一个就可以了行星距离地面距离Skm时速度与S^1/2成反比,证明其加
dy/dx=2sin(x^4)cos(x^4)*4x^3复合函数求导dy^2/dx^2=[8x^3sin(x^4)cos(x^4)]^2dy/d(x^2)=2sin(x^4)cos(x^4)*2x^2
你提的问题,涉及到书本上一个重要的知识点——复合函数的求导和倒数形式的不变性.建议你回到书本扎实基础!此处的dx-dy=d(x-y),即对(x-y)求导.举个简单的例子,d(cosx)=sinxdx,
这是常识,具体积分时就是按照先积一个变量,再积另一个变量的方式计算,这种写法无需证明,常识而已.∫∫f(x,y))dσ当然也可以写作∫dy∫f(x,y)dx
这题直接套公式就可以了.x=sint,y=cost,z=sin2t,dx=costdt,dy=-sintdt,dz=2cos2tdt;代入得原积分=∫(从0到2pi)[(cost+sin(sint))
d(x+y)=dx+dy对dxy=dxdy不对
数列1/1*2+1/2*3+…+1/n(n+1)的sn=1-1/2+1/2-1/3+----+1/n-1/(n+1)=1-1/(n+1)1-1/(n+1)中的1-是怎么得出的?1/n-的n取1吗,你不
DX+DY-2Cov(X,Y)=1+4-2*1*2*0.6=2.6
dy/d(x^3)=(dy/dx)/(d(x^3)/dx)=cosx/3(x^2)