∫∫Dx∧2y∧d其中D是圆周x∧2 y∧2=4及y轴所围成的右半区域

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 20:59:29
∫∫Dx∧2y∧d其中D是圆周x∧2 y∧2=4及y轴所围成的右半区域
学高数,没怎么学明白,我知道dy/dx是求导可是d/dx是什么意思,d∧2y/dx∧2又是什么意思

d/dx是对x求导dy/dx是y对x的导数,即y'd^2y/dx^2即d/dx(dy/dx),是y'对x的导数,即y'',是二阶导数例:y=x^2dy/dx=(x^2)'=2xd(x^2)/dx=2x

∫ (e^xsiny-my)dx+(e^xcosy-m)dy其中L是按逆时针方向从圆周(x-1)^2+y^2=1上点A(

补上直线N:y=0、使得半圆y=√[1-(x-1)²]与直线N围成闭区域.P=e^xsiny-my、Q=e^xcosy-m∂P/∂y=e^xcosy-m、∂

曲线积分:∫(y+xe^2y)dx+(x^2*e^2y+1)dy,其中L是从点(0,0)到点(4,0)的上半圆周

P=y+xe^2y,Q=x^2*e^2y+1aP/ay=1+2xe^2yaQ/ax=2xe^2y作辅助线AO:y=0,x:4->0原式=∫L+AO-∫AO=∫∫1dxdy-∫(4,0)xdx=1/2π

求二重积分∫∫根号下(R^2 -X^2-Y^2)dxdy,其中积分区域D为圆周X^2+Y^2=RX.

极坐标标∫∫√(R²-x²-y²)dxdy=∫∫r√(R²-r²)drdθ=∫[-π/2→π/2]dθ∫[0→Rcosθ]r√(R²-r&#

计算二重积分:∫∫(D)ln(1+x^2+y^2)dxdy,其中D是由圆周x^2+y^2=1及坐标轴所围的在第一象限内的

极坐标∫∫(D)ln(1+x²+y²)dxdy=∫∫(D)rln(1+r²)drdθ=∫[0→2π]dθ∫[0→1]rln(1+r²)dr=2π∫[0→1]rl

求一道二重积分:计算∫∫√(1+x^2+y^2)dxdy,其中D是由圆周x^2+y^2=4及坐标轴所围成的在第一象限内

极坐标系D:0≤θ≤π/2,0≤p≤2∫∫√(1+x²+y²)dxdy=∫[0,π/2]dθ∫[0,2]√(1+p²)pdp=π/2*(1/3)(1+p²)^(

计算二重积分:∫∫(D)1/(1+x^2+y^2)dxdy,其中D是由圆周x^2+y^2=1及坐标轴所围的在第一象限内的

再问:最后不应该是ln2*π/4吗?再答:是的再问:非常感谢,我还有一道你能帮我做一下么,我已经提问了,你搜一下吧计算二重积分:∫∫(D)ydxdy,其中D:x^2+y^2≤2x,y≥0再答:解法一样

计算积分:∫∫ln(1+x^2+y^2)dxdy,其中D是由圆周x^2+y^2=1与两坐标所围成的位于第一象限内的闭区

∫(D)∫ln(1+x^2+y^2)dxdyD:x^2+y^2=1与两坐标所围成的位于第一象限内的闭区ρ=1,θ从0,到π/2dS=ρdθdρ∫(D)∫ln(1+x^2+y^2)dxdy=∫[0,1]

二重积分(要详解)∫∫Dx*y^(1/2)dσ,其中D是由两条抛物线y=x^(1/2),y=x^2所围成的区域

原式=∫√ydy∫xdx=(1/2)∫√y(y-y^4)dy=(1/2)∫[y^(3/2)-y^(9/2)]dy=(1/2)[(2/5)y^(5/2)-(2/11)y^(11/2)]│=(1/2)(2

计算二重积分∫∫D dxdy/根号4-x²-y² 其中D是由圆周x²+y²=4围

原式=∫dθ∫rdr/√(4-r^2)(作极坐标变换)=2π∫rdr/√(4-r^2)=2π[√(4-0^2)-√(4-2^2)]=4π.

求∫(e∧xsiny-y)dx+(e∧xcosy-1)dy,其中L为点A(a,0)到点B(0,0)的上半圆周

由于曲线不封闭,补L1:y=0,x:0-->aL+L1为封闭曲线,可用格林公式:∫(e∧xsiny-y)dx+(e∧xcosy-1)dy=∫∫1dxdy被积函数为1,结果为区域的面积,这是个半圆,面积

计算∫L(x^2-2y)dx+(x+y^2siny)dy,其中L是圆周x^2+y^2=2x的正向曲线,

∵L圆周x^2+y^2=2x的半径是1∴L圆周面积∫∫dxdy=π*1^2=π(S表示L圆周x^2+y^2=2x区域)故∫L(x^2-2y)dx+(x+y^2siny)dy=∫∫[α(x+y^2sin

用极坐标计算积分:∫∫ln(1+x^2+y^2)dxdy,其中D是由圆周x^2+y^2=1与两坐标所围成的位于第一象限内

答:∫(0到π/2)dθ∫(0到1)ln(1+r^2)rdr算不定积分∫rln(1+r^2)dr=∫1/2ln(1+r^2)d(1+r^2)=1/2∫ln(1+r^2)d(1+r^2)∫lnxdx=x

高数方面的习题计算二重积分∫∫ydxdy,其中D是由圆周x的平方+y的平方等于2x所围成的闭区域我想请问一下为什么这道题

被积函数y关于自变量y是奇函数,而积分区域是关于x轴对称的.根据二重积分被积函数的奇偶性和积分区域的对称性,这个积分显然是0.

求∫(e∧xsiny-y)dx+(e∧xcosy-1)dy,其中L为点A(2,0)到点B(0,0)的圆周x^2+y^2=

补上线段y=0则令P=e^xsiny-y,dP/dy=e^xcosy-1Q=e^xcosy-1,dQ/dx=e^xcosy∫_L(e^xsiny-y)dx+(e^xcosy-1)dy=∫∫_D[(e^

∫C (yx^3+e^y)dx+(xy^3+xe^y-2y)dy,其中C为正向圆周x^2+y^2=a^2

用Green公式:∫CPdx+Qdy=∫∫D(aQ/ax--aP/ay)dxdy=∫∫D(y^3+e^y--x^3--e^y)dxdy=∫∫D(y^3--x^3)dxdy对称性积分区域D关于x,y轴都

高等数学二重积分题∫∫e的x^2+y^2次方dδ,其中D是由圆周x^2+y^2=4所围成的闭区域,∫∫下有个D传图片!看

用极坐标∫∫e^(x^2+y^2)dδ=∫(0~2π)dθ∫(0~2)e^(ρ^2)ρdρ=2π∫(0~2)e^(ρ^2)ρdρ被积函数的原函数是1/2×e^(ρ^2),所以结果是π(e^4-1)

设L为取正向的圆周x²+y²=4,则曲线积分∫L(x²+y)dx+(x-y²)d

用格林公式将一个封闭曲线上的线积分化为在此封闭区域内的面积分∫L(x²+y)dx+(x-y²)dy=(在曲线L围成的封闭区域上积分)∫∫{[∂(x-y²)/&