∫∫Dxy^2dσ,其中D是圆周x^2 y^2=4及y轴所围成的右半闭区域
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 20:58:43
把球面参数化x=2sinucosvy=2sinusinvz=2cosu|J|=2^2*sinv=4sinv0再问:我这样理解对吗:因为这个是球面,所以只要对θ,φ求积分,r是常数?还有如果就在Oxyz
dx2-y2与dxy是原子轨道,可不是分子轨道.形状是一样的,只是伸展方向不同.前者四个花瓣分布在x轴和y轴上,后者分布在xy轴的两条对角线上.
原式=∫√ydy∫xdx=(1/2)∫√y(y-y^4)dy=(1/2)∫[y^(3/2)-y^(9/2)]dy=(1/2)[(2/5)y^(5/2)-(2/11)y^(11/2)]│=(1/2)(2
你是想用极坐标的形式表示吧~令x=3rcosθ,y=4rsinθ,dxdy=(3)(4)rdrdθ=12rdrdθ∫∫dσ=∫(0-->2π)dθ∫(0-->1)12rdr=∫(0-->2π)12·r
{y=x²、y=0{x=1∫∫xydxdy=∫[0→1]dx∫[0→x²]xydy=∫[0→1]x*[y²/2]:[0→x²]dx=∫[0→1]x/2*x
15/4∫cos²θdθ=15/4∫(cos2θ+1)/2dθ=15/8[∫cos2θdθ+∫dθ]=15/16∫cos2θd2θ+15/8∫dθ=15/16sin2θ|+15/4π=15/
原式=∫<1,2>dx∫<1/x,x>(x/y²)dy=∫<1,2>x(x-1/x)dx=∫<1,2>(x²-1)dx=2³
换元法x=rcosax^2+y^2≤1所以0
可以X型或Y型方面计算将二重积分化为普通定积分计算即可若是X型,先计算对y的定积分,后对x若是Y型,先积分对x的定积分,后对y若是Y型的话需要分段,因为积分区间中有两条曲线的交接.
先积y,∫∫y²dσ=∫[0---->2πa]dx∫[0--->y(x)]y²dy=(1/3)∫[0---->2πa]y³(x)dx换元:令x=a(t-sint),则y(
设x=rcosty=rsint-π/2
X区域:D:x=2,y=1,y=x==>1≤x≤2,1≤y≤x∫∫_Dxydxdy=∫(1→2)dx∫(1→x)xydy=∫(1→2)[xy²/2]:(1→x)dx=∫(1→2)(x
用极坐标∫∫e^(x^2+y^2)dδ=∫(0~2π)dθ∫(0~2)e^(ρ^2)ρdρ=2π∫(0~2)e^(ρ^2)ρdρ被积函数的原函数是1/2×e^(ρ^2),所以结果是π(e^4-1)
∫∫[D]arctan(y/x)dxdy=∫dθ∫arctan(sinθ/cosθ)rdr(作极坐标变换)=∫dθ∫r^2dr=(π/4)(8/3-1/3)=7π/12.再问:书本答案是3(π^2)/
y=x及y=2x,y=1交点(1/2,1),(1,1)则∫∫e^y^2dσ=∫[0,1]∫[y/2,y]e^y^2dxdy=∫[0,1]e^y^2∫[y/2,y]dxdy=∫[0,1]e^y^2*y/