∫º½(2X 1)99dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 23:08:16
∫x^3/(9+x^2)dx=1/2∫x^2/(9+x^2)dx^2(x^2=t)=1/2∫t/(9+t)dt=1/2∫(t+9-9)/(9+t)dt=1/2∫[1-9/(9+t)]dt=1/2t-9
解析tan'x=sec²x所以∫sec²xdx=tanx+c再问:∫sec^2tan^2dx等于多少呢再答:因为sec²xtan²x=sin²x∫si
∫(arctanx)^2/(1+X²)dx∵d(arctanx)=1/(1+x²)dx∴∫(arctanx)^2/(1+X²)dx=∫(arctanx)^2d(arcta
=∫x(secx)^2dx=∫xdtanx=xtanx-∫tanxdx=xtanx-∫sinx/cosxdx=xtanx+∫dcosx/cosx=xtanx+ln|cosx|+C
原式=∫(sin²x+cos²x+2sinxcosx)dx=∫(1+sin2x)dx=1/2∫(1+sin2x)d2x=x-cos2x+C
设x=it,则∫sqrt(a^2+x^2)dx=i∫sqrt(a^2-t^2)dt=i((1/2)tsqrt(a^2-t^2)+(a^2/2)arcsin(t/a)+C)=(1/2)itsqrt(a^
原积分=∫(1,0)(x+1)dx+∫(2,1)(1/2x^2)dx=(1/2*x^2+x)(1,0)+(1/6*x^3)(2,1)=(1/2+1/2)+(1/6*8-1/6*1)=13/6PS:这个
令t=tan(x/2)则cosx=[cos²(x/2)-sin²(x/2)]/[cos²(x/2)+sin²(x/2)]=[1-tan²(x/2)]/
求暇积分【0,2】∫dx/(1-x)²原式=【0,1】∫dx/(1-x)²+【1,2】∫dx/(1-x)²=【0,1】∫dx/(x-1)²+【1,2】∫dx/(
cos^2(2x)=2cos4x-1∫cos^2(2x)dx=∫(2cos4x-1)dx=1/4∫2cos4xd4x-∫dx=1/2sin4x-x+C(C为常数)
=∫(1-cos4x)/2dx=∫1/2dx-∫cos4x/8d4x=0.5x-1/8*sin4x+C(C为任意常数)再问:为什么1-cos^(2)2x=(1-cos4x)/2?是用了什么公式吗,还是
∫(x^2*cosx)dx=x^2*sinx-2∫xsinxdx=x^2*sinx+2xcosx-2∫cosxdx=x^2*sinx+2xcosx-2sinx+C(C为任意常数)
sysxabf1=x+1;f2=0.5*x^2;int(f1,0,1)+int(f2,1,2)f=exp(ax)*sin(bx)inf(f)
(x^2)/2-18x^(1/2)+3x+C0.5*x^2+2*x^(1/2)+C9x-2x^3+0.2*x^5+C
∫dx/x(a+bx)1/x(a+bx)={(1/x)-[b/(a+bx)]}/a所以∫dx/x(a+bx)=[∫(1/x)dx-b∫(1/a+bx)dx]/a=(ln|x|)/a-b∫(1/a+bx
容易啊,由第一个式子变形,把X0当未知数解出(用含X1的式子表达),然后将这个X0代入第二个式子
=x(lnx)²-∫x(2lnx)/xdx=x(lnx)²-2∫lnxdx=x(lnx)²-2xlnx+2∫x*(1/x)dx=x(lnx)²-2xlnx+2再
1. (1)令t=tan(x/2), 则cosx=(1-t^2)/(1+t^2), dx=1/(1+t^2)dt 所以下面具体见图片一般思路都是令t=tan(x