∫xtan²xdx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 10:49:14
∫arctanxdx=x*arctanx+∫x/(1+x²)dx=x*arctanx-1/2*ln(1+x²)+C
√x=tx=t²dx=2tdt∫arctan√xdx=∫2tarctantdt=∫arctantdt²=t²arctant-∫t²/(1+t²)dt=
∫xtan²xdx设u=x,dv=tg^2xdx,则du=dx,v=tgx-x于是∫xtan²xdx=x(tgx-x)-∫(tgx-x)dx=x(tgx-x)+Ln|cosx|+x
∫arcsinxdx(分部积分法)=xarcsinx-积分:xd(arcsinx)=xarcsinx-积分:x/根号(1-x^2)dx=xarcsinx+1/2积分:d(1-x^2)/根号(1-x^2
原式=∫xsinx/cos^3(x)*dx=-∫x/cos^3(x)*d(cosx)=1/2∫xd(1/cos^2(x))=x/(2cos^2(x))-1/2∫dx/cos^2(x)=x/(2cos^
方法多了.第一种:∫secxdx=∫secx·(secx+tanx)/(secx+tanx)dx=∫(secxtanx+sec²x)/(secx+tanx)dx=∫d(secx+tanx)/
答案是三分之二乘以x的二分之三次方+c
1/2∫e^2xdx=1/4∫e^2xd2x是因为dx变为d2x了dx=(1/2)d2x1/2∫e^2xdx=1/2∫e^2x(1/2)d2x=1/4∫e^2xd2x
∫cos²xdx=∫cosxdsinx=sinxcosx-∫sinxdcosx=sinxcosx+∫sin²xdx=sinxcosx+∫(1-cos²x)dx=sinxc
用分部积分法,先把x^2放到dx里面然后分部积分再把dlnx变成1/xdx
换元法:令arcsinx=u,则x=sinu,dx=cosudu原式=∫u²cosudu=∫u²dsinu分部积分=u²sinu-2∫usinudu=u²sin
∫cosx/xdx是超越积分,已经被证明了它的不定积分不可积.因此是没有答案的.只能求定积分,而且求定积分只能求特殊点,也不能用牛顿-莱布尼茨公式.你在哪里看到的题目呀?
∫x^2√xdx=∫x^(5/2)dx=2/7*x^(7/2)+C再问:∫x^(5/2)dx里的5/2怎么得出来的?再答:√x=x^(1/2)
它的原函数无法用初等函数表达.再答:有不懂之处请追问,望采纳。
∫e^√xdx=2∫√xe^√xd√x=2∫√xde^(√x)=2√xe^(√x)-2∫e^√xd√x=2√xe^(√x)-2e^(√x)+C
∫x²lnxdx,宜用分部积分法=(1/3)∫lnxd(x³)=(1/3)x³lnx-(1/3)∫x³d(lnx)=(1/3)x³lnx-(1/3)∫
∫xarctanxdx=∫arctanxd(x^2/2)=x^2/2*arctanx+(1/2)∫x^2/(1+x^2)*dx=(1/2)(x^2arctanx+x-arctanx)+C
你那个是反常积分,不定积分如下:∫xe^xdx=∫xd(e^x)=x(e^x)-∫(e^x)dx=x(e^x)-e^x+C
再答:再答:第一个错了再问:不好意思,我把问题打错了,中间是除不是乘。您再看一眼,求指导!再答:
答:∫√lnx/xdx=∫√lnxd(lnx)=(2/3)*(lnx)^(3/2)+C