∫tsintdt ∫ln(1 t)dt

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 15:11:44
∫tsintdt ∫ln(1 t)dt
∫ln(1+x^2)dx

∫ln(1+x²)dx=x•ln(1+x²)-∫xdln(1+x²)=xln(1+x²)-∫x•1/(1+x²)•

证明‘‘u(t)=∫(0,丌)ln(t²+2t cosx+1)dx ” 为偶函数

因为cosx=-cos(丌-x)u(-t)=∫(0,丌)ln(t²-2tcosx+1)dx=∫(0,丌)ln(t²+2tcos(丌-x)+1)dx=∫(0,丌)ln(t²

∫ln(1+tanx)dx=

如果是求定积分的话就好了∫[0,π/4]ln(1+tanx)dx换元π/4-t=x=-∫[π/4,0]ln[1+(1-tant)/(tant+1)]dt==∫[0,π/4]ln[2/(tant+1)]

求极限limx→0 ∫(0→2x) ln(1+t)dt/x^2

limx→0∫(0→2x)ln(1+t)dt/x^2洛必达法则=lim[x→0]2ln(1+2x)/(2x)=lim[x→0]ln(1+2x)/x等价无穷小代换=lim[x→0]2x/x=2希望可以帮

求极限limx→0 (∫tsintdt)/ln(1+x^3)上限为x,下限为0

由洛必达法则原式=lim(x→0)xsinx/[3x^2/(1+x^3)]=lim(x→0)(1+x^3)sinx/(3x)=1/3

∫f(x)/xdx f(x)=∫(上限x 下限1)ln(t+1)/t dt

{f(x)d(lnx)={f(e^lnx)d(lnx)=f(e^x)+c,{ln(t+1)dt={ln(t+1)d(t+1)=={e^lnt*ln(t+1)dln(t+1)={e^ln(t+1)ln(

求极限lim(x→0+) ∫(0~x)ln(t+e^t)dt/1+cosx

lim(x→0+)∫(0~x)ln(t+e^t)dt/1+cosx=0/(1+1)=0

(∫x上限0下限ln(1+t)dt)的导数等于?

-ln(1+t)/1+t因为上限是0,积分函数是x,所以就变成了-ln(1+t)再乘上ln(1+t)的导数这个属于变限积分的问题如果∫f(x)dx,上限是a(x),下限是b(x)的话,那么它就等于=f

limx->0 ∫(0,x)[ln(1+t)dx]/x^2

再问:再问:这个呢再答:

求极限 limx→+∞ 1/√X ∫上限x下限1 ln(1+1/√t)dt

 若有不懂请追问,如果解决问题请点下面的“选为满意答案”.

高数证明f(t)=∫(0→π)ln(t²+2tcosx+1)dx为偶函数

由题目f(t)=ln(t^2+2tcosx+1)dx,积分上限是π,下限是0.(1)得到f(-t)=ln(t^2-2tcosx+1)dx,积分上限是π,下限是0.(2)设y=π+x,则f(-t)=ln

证明F(t)=∫ Ln(t^2-2t*cosx+1)dx为偶函数.(注明积分上限为PI,下限为O)

证明如下:(打错符号无所谓,没有影响,证明过程是一样的)

求极限lim(x趋向0)(∫ln(1+t)dt)/x^4 上限x^2下限0

极限lim(x趋向0)(∫ln(1+t)dt)/x^4上限x^2下限0=lim(x->0)ln(1+x²)·2x/4x³=1/2lim(x->0)ln(1+x²)/x&#

求f(x)= ∫(-1,x)ln(1+t^2)dt的导数

ƒ(x)=∫(-x)ln(1+t²)dtƒ'(x)=ln(1+x²)没步骤,就是公式[∫(a~x)ƒ(t)dt]'=ƒ(x)

a∫1/sint*dt-a∫sint*dt =a*ln|tan(t/2)|+a*cost+C

a∫1/sintdt=a∫1/(2sin(t/2)cos(t/2))dt【倍角公式】=∫1/(tan(t/2)[cos(t/2)]^2)d(t/2)【凑微分法】=∫1/(tan(t/2))d(tan(

已知x=ln(1+t

∵x=ln(1+t2)y=arctant∴dxdt=2t1+t2,dydt=11+t2∴dydx=dydtdxdt=11+t22t1+t2=12t∴d2ydx2=ddx(dydx)=ddt(dydx)

设ln f(t)=cost,则∫[tf'(t)]/f(t)dt=

再问:为什么不能直接化为tlnt呢再答:tlnƒ(t)和tcost不是一样吗?