∫tf(2x–t)dt=1 2arctanx²
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 15:11:44
letdF(x)=e^(-x^2)dxf(t)=∫(1->t^2)e^(-x^2)dx=F(t^2)-F(1)f'(t)=2tF'(t^2)=2te^(-t^4)∫(0->1)tf(t)dt=(1/2
找你这道题找得我好辛苦啊!解法一:换元法!令u=x∧2-t∧2,则t=√(x∧2-u)当t=0时,u=x∧2,当t=x时,u=0.且dt=(-1)/2√(x∧2-u)∴原式=∫f(u)*√(x∧2-u
两边求导啊,然后化成线性微分方程啊
F'(x)=xf(cosx),这个函数显然是奇函数,奇函数的原函数必为偶函数.选B.选择题要用最快捷的方法解决,不能花太多时间.再问:偶函数的原函数是什么呢?再答:偶函数的原函数是奇函数或非奇非偶。原
答:f(x)=2sinx+cosxf(x)=1+2x+∫(0~x)tf(t)dt-x∫(0~x)f(t)dt...(1)f'(x)=2+xf(x)-[∫(0~x)f(t)dt+xf(x)]f'(x)=
答案如图所示,友情提示:点击图片可查看大图
y=∫[0,x]tf(x²-t²)dt令u=x²-t²,du=-2tdt当t=0,u=x²;当t=x,u=0y=∫[x²,0]tf(u)*d
x和0谁是上限谁是下限啊,我当作x是上限,0是下限等式右边的那个积分需要先换元,令x-t=u,则dt=-du,t从0变到x,则u从x变到0那个积分可化为:-∫[0,x](x-u)f(u)du=x∫[x
t=x-udt=d(x-u)=-du没错应该是dt=-du再问:����-du�������������Ǹ��ģ��ο���������ġ�再答:Ӧ���Ǹ��ġ������
你已经懂了,谢啦~
你这题目有问题∫[a,x]tf(t)dt的导数就是xf(x)再问:∫[0,x]tf(t)dt的积分才是xf(x),但是现在下线不是0,是a.再答:你去看看莱布尼兹公式,下限时任意常数再问:我知道莱布尼
z=∫[0---->√(x²+y²)]tf(x²+y²-t²)dt令x²+y²-t²=u²,两边微分得:tdt
连点分也不给,不过做出来了就写给你吧~
∵[∫(0,x)f(t)]'=f(x)[∫(0,x)xf(t)dt]'=[x∫(0,x)f(t)dt]'=x*[∫(0,x)f(t)dt]'+(x)'*∫(0,x)f(t)dt=x*f(x)+1*∫(
∫(0到x)tf(x-t)dt=sinx+kx令r=x-t,则dt=-dr,于是∫(0到x)tf(x-t)dt=∫(x到0)(x-r)f(r)(-dr)=∫(0到x)[xf(r)-rf(r)]dr=x
∫[0→x]tƒ(t)dt=ƒ(x)+x²、两边求导xƒ(x)=ƒ'(x)+2x-->xy=y'+2xdy/dx=xy-2x=x(y-2)dy/(y-
令u=x-t0≤t≤xt=x-u则∫0到xtf(x-t)dt=∫x到0(x-u)f(u)d(x-u)=∫x到0(u-x)f(u)du=∫0到x(x-u)f(u)du与积分变量无关,所以∫0到xtf(x
再问:为什么不能直接化为tlnt呢再答:tlnƒ(t)和tcost不是一样吗?