∫sinx╱xdx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 18:09:04
∫sinx╱xdx
求不定积分∫arctan xdx

∫arctanxdx=x*arctanx+∫x/(1+x²)dx=x*arctanx-1/2*ln(1+x²)+C

计算不定积分∫arctan√xdx

√x=tx=t²dx=2tdt∫arctan√xdx=∫2tarctantdt=∫arctantdt²=t²arctant-∫t²/(1+t²)dt=

设函数f(x)具有连续导数,且曲线积分 ∫(sinx-f(x))y/xdx+f(x)dy与路径无关,f(派)=1,则f(

这是小学题吗?⊙_⊙再答:出题请出在相对的年纪哦再答:给个采纳吧再问:我填的其它再问:我填的其它,怎么成小学了再问:你太可爱了再答:额再答:因为你问的问题那有选择哦再答:有采纳吗再问:没有再答:哦再问

arc(sinx)^2 与(arcsinx)^2 与arcsin^2x 一样吗?还有这个不定积分∫arcsin^2xdx

arc(sinx)^2这种表示方法是错误的,没有这种表示方法(arcsinx)^2表达方式正确,arcsin^2x,一般不用这种表示方式.用分步积分法∫arcsin^2xdx用分步积分法∫(arcsi

求下列不定积分1.∫sinx/(1+sinx)dx 2.∫(xcosx)/sin²xdx

∫sinxdx/(1+sinx)=∫dx-∫dx/(1+sinx)1+sinx=1+cos(π/2-x)=2cos(π/4-x/2)^2=∫dx-∫d(x/2)/cos(π/4-x/2)^2=x+ta

∫sin 2\3 xdx,∫e^sinx cosxdx,∫1\x^2 sin 1\x dx求不定积分

∫sin2/3xdx=3/2∫sin2x/3d2x/3=-3/2×cos(2x/3)+C∫e^sinxcosxdx=∫e^sinxdsinx=e^sinx+C∫1\x^2sin1\xdx=-∫sin(

不定积分sinx/xdx的原函数是什么

不能表示为初等函数.

计算不定积分 ∫arcsin xdx

∫arcsinxdx(分部积分法)=xarcsinx-积分:xd(arcsinx)=xarcsinx-积分:x/根号(1-x^2)dx=xarcsinx+1/2积分:d(1-x^2)/根号(1-x^2

求不定积分∫xtanx(sec^2)xdx!

原式=∫xsinx/cos^3(x)*dx=-∫x/cos^3(x)*d(cosx)=1/2∫xd(1/cos^2(x))=x/(2cos^2(x))-1/2∫dx/cos^2(x)=x/(2cos^

∫sec xdx的不定积分求法,

方法多了.第一种:∫secxdx=∫secx·(secx+tanx)/(secx+tanx)dx=∫(secxtanx+sec²x)/(secx+tanx)dx=∫d(secx+tanx)/

∫根号xdx=,

答案是三分之二乘以x的二分之三次方+c

求定积分∫(sinx)^(n-1)cos(n+1)xdx,上限为π,下限为0.书上说用分部积分法

∫[0,π]sinx^(n-1)cosx^(n+1)dx=∫[0,π]sinx^(n-1)cosx^(n-1)*cosx^2dx=(1/2^n)∫[0,π](sin2x)^n[(1+cos2x)/2]

求不定积分∫xcos xdx

∫cos²xdx=∫cosxdsinx=sinxcosx-∫sinxdcosx=sinxcosx+∫sin²xdx=sinxcosx+∫(1-cos²x)dx=sinxc

求不定积分?∫cosx/xdx

∫cosx/xdx是超越积分,已经被证明了它的不定积分不可积.因此是没有答案的.只能求定积分,而且求定积分只能求特殊点,也不能用牛顿-莱布尼茨公式.你在哪里看到的题目呀?

∫sinx/cos^3x dx=∫tanxsec^2xdx=∫tanxd(tanx)=-ln|cosx|+c 这我自己做

你自己做的最后一步错了∫tanxd(tanx)=1/2tan²x+C本题另一个解法:∫sinx/cos³xdx=∫sec²xtanxdx=∫secxd(secx)=1/2

求∫sinx/xdx定积分,积分上限1下限0

这是不定积分的形式.如果有不明白可追问,明白请采纳!再问:лл���Ѳ��ɣ�������������е���get��

求不定积分∫sinx/xdx

它的原函数无法用初等函数表达.再答:有不懂之处请追问,望采纳。

求两道不定积分,1,∫[(sinx+cosx)/(sinx-cosx)^1/3]dx2,∫(tan√1+^2)xdx/√

(1)原式=∫(sinx-cosx)^(-1/3)d(sinx-cosx),令u=sinx-cosx,剩下的自己写第二问题目好像码的都有问题

已知∫(0→∞)sinx/xdx=π/2,求∫(0→∞)(sinx/x)的平方 dx

分部积分∫(sinx/x)^2dx=∫(sinx)^2*d(-1/x)=[-(sinx)^2/x](0->+inf)+∫2sinxcosx/xdx∫2sinxcosx/xdx=∫sin2x/(2x)d