∫sintdt除以X方
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 13:29:20
limx→∞X方-1除以3X方-X-1=limx→∞1-1/x平方除以3-1/X-1/x平方=(1-0)÷(3-0-0)=1/3
有没有括号?是不是这样的:1+(2x^4)/(2x^3)+x^2=x^2+x+1
f(x)cosx+2∫(0~x)f(t)sintdt=x+1两边求导f′(x)cosx-sinxf(x)+2f(x)sinx=1即f′(x)cosx+f(x)sinx=1两边同时除以cos²
x^2-3x+1/x=2x^2-3x+1=2xx^2-5x+1=0两边乘xx-5+1/x=0x+1/x=5平方x^2+2+1/x^2=25x^2+1/x^2=23x^4+x^2+1/x^2=x^2+1
利用不定积分,∫(0,1)xf(x)dx=0.5∫(0,1)f(x)dx²=【0.5x²f(x)】(0,1)-0.5∫(0,1)x²df(x)①而【0.5x²f
Leibniz公式:d/dx∫(a(x),b(x))f(t)dt=b'(x)*f[b(x)]-a'(x)*f[a(x)]f(x)=∫(π,x)sint/tdtf'(x)=x'*(sinx)/x-π'*
lim(x→0)∫te^tdt变限范围(0,x^2)/∫x^2sintdt变限范围(0,x)=lim(x→0)∫te^tdt变限范围(0,x^2)/x^2∫sintdt变限范围(0,x)这儿x
是不是[sin(x/2)]^2*[cos(x/2)]^2?如果是则[sin(x/2)]^2*[cos(x/2)]^2=[sin(x/2)cos(x/2)]^2=[(1/2)*sin(x/2)cos(x
原式=[x/(x-1)-x/(x+1)(x-1)]÷[x(x-1)/(x-1)²]=[x/(x-1)-x/(x+1)(x-1)]÷[x/(x-1)]=[x/(x-1)-x/(x+1)(x-1
(9x^4-12x^3+54x^2)÷3x^2=3x^2(3x^2-4x+18)÷3x^2=3x^2-4x+18
方法一:x趋近0,∫(0-x)sintdt趋近0,使用罗比达法则:lim(x趋近0){∫(0-x)sintdt}/x^2=lim(x趋近0)d/dx∫(0-x)sintdt/2x=lim(x趋近0)s
我看下是不是这么解设y=x/(x^2-1)原方程可化为:2y^2-3/y=2(y≠0)=>2y^2-2y-3=0(y≠0)然后解出y=(1+根号7)/2或y=(1-根号7)/2这样解出来的答案太复杂了
原式=x^(3-5+4)=x^2
解法如下:∫(t-sint)^2sintdt=∫(t^2sint+sint^2sint-2tsint^2)dt=∫t^2sintdt+∫(1-cost^2)sintdt-2∫tsint^2dt=-∫t
明显是0,下面是无穷大,而上面一定是个有限值:2>=∫[0->x]sintdt>=-2再问:sint是绝对值sint,答案不是0,是派/2再答:|sint|是周期为π的函数∫[0->π]|sint|d
两边对x求导得:2f'(x)f(x)=f(x)sinx/(2加cosx)2f'(x)=sinx/(2加cosx)积分得:f(x)=(-1/2)ln|2加cosx|加C因f'(0)=0,C=(1/2)l
假设e^(2t)sint的一个原函数是F(t)则F'(x)=e^(2x)sinx且f(x)=F(-2)-F(x)F(-2)是常数,导数为0所以f'(x)=0-F'(x)=-e^(2x)sinx