∫dx 根号x(1-x)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:56:33
=-1/2∫√(1-x^2)d(1-x^2)=-1/2×2/3√(1-x^2)^3+C=-1/3√(1-x^2)^3+C
/>令x=sect,则dx=sect·tantdt∫(1→2)√(x²-1)/xdx=∫(0→π/3)tan²tdt=∫(0→π/3)(sec²t-1)dt=(tant-
求定积分要有上下限的,否则是求不定积分.对于x/(1+√x)可令y=√x,y²=x,2ydy=dx∫x/(1+√x)dx=2∫y³dy/(1+y)而y³dy/(1+y)=
令√x=tx=t^2dx=2tdt原式=∫2tdt/(1+t)=2∫[1-1/(1+t)]dt=2t-2ln(1+t)+C
设x=tanα则√(x²+1)=1/cosα∴原式=∫d(tanα)/(tanα+1/cosα)=∫(1/cos²α)/(tanα+1/cosα)dα=∫(cosα)dα/(sin
∫1/根号x*sec^2(1-根号x)dx=2∫sec^2(1-根号x)d(√x)=-2∫sec^2(1-根号x)d(1-√x)=-2tan(1-√x)+c
令t=√x∫1/(1+2√x)dx=∫1/(1+2t)dt^2=∫2t/(1+2t)dt=∫1-1/(1+2t)dt=∫dt-∫1/(1+2t)dt=t+1/2ln(1+2t)+C=√x+1/2ln(
∫dx/x[根号1-(ln^2)x]=∫d(lnx)/[根号1-(ln^2)x]=∫dt/[根号1-t^2](设t=lnx)=arcsint+C=arcsin(lnx)+C
解令√x=t则t²=x,dx=2tdt∴∫dx/(1+√x)=∫2tdt/(t+1)=2∫[(t+1)-1]/(t+1)dt=2∫1-1/(t+1)dt=2t-2ln|t+1|+C=2√x-
∫√[1+√x]/x^[3/4]dxLetu=x,dx=4udu=∫√[1+u]/u*[4u]du=4∫√[1+u]duLetu=tanz,du=seczdz=4∫√[1+tanz][seczdz]=
设t=3次根号(x+1),x=t^3-1dx=3t^2dt原式=∫1/t*3t^2dt=∫3tdt=3/2t^2+C=3/2*3次根号(x+1)^2+C
原来前面那个你采纳别人了,那就算了我爸我的回答删了再问:我刚想采纳你的。。。。。。。。。。。。。。再答:那前面那个呢?我最快,而且应该有绝对值的只有我是对的前面那个重新问一次吧,采纳我
∫dx/x根号(1+lnx)=∫1/根号(1+lnx)d(1+lnx)=2根号(1+lnx)+c再问:=∫1/根号(1+lnx)d(1+lnx)为什么=2根号(1+lnx)+c再答:∫dx/x根号(1
(x^2)/2-18x^(1/2)+3x+C0.5*x^2+2*x^(1/2)+C9x-2x^3+0.2*x^5+C
∫1/[1+(√3x)]dx=1/√3·∫1/[1+(√3x)]d(√3x)=1/√3·∫1/[1+(√3x)]d(1+√3x)=1/√3·ln|1+√3x|+C
∫x*√[(1-x)/(1+x)]dx=∫[x(1-x)/√(1-x^2)]dxletx=sinydy=cosydy∫[x(1-x)/√(1-x^2)]dx=∫siny(1-siny)dy=∫[sin
原式=-2√(1-x)+lnx+c
原式=∫dx/(2X-1)^3/2=1/2∫(2X-1)^(-3/2)d(2x-1)=-根号(2x-1)
答:∫1/√xdx=∫x^(-1/2)dx=[1/(-1/2+1)]*x^(-1/2+1)+C=2√x+C