∫dx √(x^2 1)^3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:21:26
原式=1/4∫dx^4/√(1-x^8)=1/4*arcsin(x^4)+C
∫√x/(√x-3^√x)dx换元,x=t^6=∫t^3/(t^3-t^2)d(t^6)=∫t^3(6t^5)/(t^3-t^2)dt=6∫t^6/(t-1)dt=6∫(t^6-1+1)/(t-1)d
∫(3x+1)/√(4+x²)dx令x=2tanθ,dx=2sec²θdθ=∫(6tanθ+1)/(2secθ)•(2sec²θ)dθ=∫(6secθtanθ
原式=∫cos(3x)/sin(3x)dx=1/3∫1/sin(3x)dsin3x=1/3ln绝对值sin3x+c
1.原式=∫x^(3/2)dx=2/5x^(5/2)+C2.原式=∫x^(5/2)dx=2/7x^(7/2)+C3.原式=∫x^(-2)dx=-1/x+C4.原式=6*x^4/4+C=3/2x^4+C
令³√x=t,那么x=t^3,用分部积分法来慢慢做,但要细心原积分=∫sintd(t^3)=∫3t^2*sintdt=-3t^2*cost+∫cost*d(3t^2)=-3t^2*cost+
令x=tanθ,dx=sec²θdθ∫x³/√(1+x²)dx=∫tan³θ/|secθ|*(sec²θdθ)=∫sin³θ/cosS
难度不大.
我知道这个题是个定积分题,请追问我给出积分限.我按我以前做过的同一题给你做吧,积分限是0→π∫[0→π]√(sin^3x-sin^5x)dx=∫[0→π]√[sin³x(1-sin²
再问:第二步是怎么算出来的?再答:三角换元
∫dx/√(x^2-2x-3)=∫dx/√[(x-1)^2-4]=∫dt/√(t^2-4)=ln‖t+√t^2-4‖+C=ln‖x-1+√(x^2-2x-3)‖+C再问:]=∫dt/√(t^2-4)=
∫inx/√xdx=2∫inxd√x=2√xlnx-2∫√x*1/xdx=2√xlnx-2∫1/√xdx=2√xlnx-4√x+c
答:∫√x(x-3)dx=∫x^(3/2)-3x^(1/2)dx=(2/5)x^(5/2)-3*(2/3)x^(3/2)+C=0.4x^(5/2)-2x^(3/2)+C
每一个分出来积分,答案是2x^2-2x^(3/2)-5lnx
1,=∫(x-1-2)/((x-1)^2+1)dx=1/2∫1/((x-1)^2+1)d((x-1)^2+1)-2∫1/((x-1)^2+1)d(x-1)=1/2ln(x^2-2x+2)-2arctg
∫xcos(x/3)dx=3∫xdsin(x/3)=3xsin(x/3)-3∫sin(x/3)dx+C=3xsin(x/3)+9cos(x/3)+CC为任意常数