∫dx x²√x² 1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:49:52
∫dx x²√x² 1
求下列函数的值域: (1)y=1-x²/1+x² (2)y=-x²-2x+3 (3)y=x+1/x (4)y=x+√1-

解题思路:用x2的取值范围、二次函数的的性质、均值不等式,换元法求函数的值域解题过程:

已知f(x)=x²+x+1

解题思路:考察函数的概念及性质解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/re

关于导数的三道题1.求由下面参数方程所确定的函数的导数dy/dxx=-1+2t-t^2y=2-3t+t^32.一质点作直

1.dy/dx=(dy/dt)/(dx/dt)=(3t^2-3)/(2-2t)=-3/2*(t+1)2.a(t)=s''(t)=((e^t-(-1)e^-t)/2)'=(e^t-e^-t)/2=s(t

解 x²+x+1>0

解题思路:配方法,转化求解。配方法,转化求解。配方法,转化求解。解题过程:

已知∫f(x)dx=xf(x)-∫x/√(1+x^2)dx,则f(x)=

∫f(x)dx=xf(x)-∫xdf(x)∫f(x)dx=xf(x)-∫xdx/√(1+x^2)df(x)=dx/√(1+x^2)f(x)=∫dx/√(1+x^2)=ln|x+√(1+x^2)|+Cx

已知x²-3x+1=0.求(1)x²+x²分之一;(2)(x-x/1)²

解题思路:本题主要根据等式的性质两边同除,然后进行平方求解。解题过程:

已知X²-5X+1=0,求X²+1/X²的值。

解题思路:本题考查有关式子的变形问题,注意完全平方公式的应用解题过程:

∫x√(1+2x)dx

这个是考你的换元能力来的,~~~~不明白的就追问吧~~~~希望楼主采纳!O(∩_∩)O谢谢

求两道高数题∫xtan²xdx arctanx∫————dxx²用分部积分法解

∫xtan²xdx设u=x,dv=tg^2xdx,则du=dx,v=tgx-x于是∫xtan²xdx=x(tgx-x)-∫(tgx-x)dx=x(tgx-x)+Ln|cosx|+x

已知函数f(x)=4x²-4x+3 x≥1/2 2 x<1/2 若f(x-1x²/4)>f(x-2),则xd 取值范围是

解题思路:本题主要考查利用函数单调性解不等式。解题过程:

已知x²-5x=14,求(x-1)(2x-1)-(x+1..

解题思路:先化简代数式,再把x²-5x=14代入进行计算解题过程:0最终答案:略

∫1/√x*(4-x)dx

Log就是ln的意思.后面自己加一个常数C即可.再答:有什么不懂得尽管问再问:但我再求导你的结果检验得不到题目的式子啊?再答:不可能吧,你合并没?我这是用MATLAB计算得到的结果,手算过程技巧就是换

∫(1-x)^2/√x

展开得到原积分=∫1/√x-2√x+x^(3/2)dx=2√x-4/3x^(3/2)+2/5*x^(5/2)+C,C为常数

∫(arctan√x)/[√x*(1+x)]dx

一步一步微分、积分并用,就可以还原出原函数,也就是一些教师所说的“还原法”,或“凑微分法”:∫(arctan√x)/[√x×(1+x)]dx=2∫(arctan√x)/[1+x]d√x=2∫(arct

∫dx/[x√(1-x^4)]

∫dx/[x√(1-x^4)]letx^2=siny2xdx=cosydy∫dx/[x√(1-x^4)]=(1/2)∫(1/siny)dy=(1/2)ln|cscy-coty|+C=(1/2)ln|1

∫(x^3+2x√x-1/√x)dx等于多少

∫(x^3+2x√x-1/√x)dx=∫x³dx+2∫x^(3/2)dx-∫x^(-1/2)dx=1/4x^4+4/5x^(5/2)-2√x+C