∫cos²xdx=∫[1+cos2x] 2dx=x+1 4sin2x+c
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 10:13:10
∫√(tanx+1)/cos²xdx=∫√(tanx+1)*sec²xdx=∫√(tanx+1)d(tanx)=∫√(tanx+1)d(tanx+1)=(2/3)(tanx+1)^
∫arctanxdx=x*arctanx+∫x/(1+x²)dx=x*arctanx-1/2*ln(1+x²)+C
(1)令x=sint,因x属于(-1,2),故t在(-pi/2,pi/2)内,且dx=costdt∫x^2/根号(1-x^2)dx=∫(sint)^2/cost×costdt=∫(sint)^2dt=
∫tan^2xdx=∫(sec^2x-1)dx=∫sec^2xdx-∫1dx=tanx-t+C
求微分方程COSxSinydy=COSySinxdx,Y|x=0=π/4的特解急啊要步骤可分离变量的微分方程移项(SINy/COSy)dy=(SINx/COSx)dx
∫(0->π)cosxdx=sinx(0->π)=sin(π)-sin(0)=0-0=0
∫[0,π]cos²xdx=∫[0,π](1+cos2x)/2dx=(x/2+sin2x/4)[0,π]=π/2
∫arcsinxdx(分部积分法)=xarcsinx-积分:xd(arcsinx)=xarcsinx-积分:x/根号(1-x^2)dx=xarcsinx+1/2积分:d(1-x^2)/根号(1-x^2
答案是三分之二乘以x的二分之三次方+c
就按楼主的步骤做sin^3x提出一个sinx、sin^3x/cos^3xdx=1/3sin^2x/cos^3xdcosx=(1-cos^2x)/cos^3xdcosx=(1/cos^3x-1/cosx
∫[0,π]sinx^(n-1)cosx^(n+1)dx=∫[0,π]sinx^(n-1)cosx^(n-1)*cosx^2dx=(1/2^n)∫[0,π](sin2x)^n[(1+cos2x)/2]
按照定义来说,不是一个区间的,因此分开了.正常计算是可以的,但是用定义的法就分为了正负区间.
可拆成两项如图,第二项用分部积分计算.经济数学团队帮你解答,请及时采纳.谢谢!
∫cos²xdx=∫cosxdsinx=sinxcosx-∫sinxdcosx=sinxcosx+∫sin²xdx=sinxcosx+∫(1-cos²x)dx=sinxc
∫cosx/xdx是超越积分,已经被证明了它的不定积分不可积.因此是没有答案的.只能求定积分,而且求定积分只能求特殊点,也不能用牛顿-莱布尼茨公式.你在哪里看到的题目呀?
你自己做的最后一步错了∫tanxd(tanx)=1/2tan²x+C本题另一个解法:∫sinx/cos³xdx=∫sec²xtanxdx=∫secxd(secx)=1/2
它的原函数无法用初等函数表达.再答:有不懂之处请追问,望采纳。
原式=1/2∫dx²/sin²(x²+1)=1/2∫csc²(x²+1)d(x²+1)=-1/2∫[-csc²(x²+1