∫arctanx x(1 x²)dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 14:05:19
解题思路:应用牛--莱公式及微分的意义。。。。。。。。。。。。。。。。。。。。。解题过程:fj1
∫)0到4∫(x^2+y^2)再根号)0到4dxdy减去∫)0到1∫(x^2+y^2)再根号)0到1dxdy就行了
∵∫arctanxx2(1+x2)dx=∫arctanx(1x2−11+x2)dx=∫arctanxx2dx−∫arctanx1+x2dx=−∫arctanxd(1x)−∫arctanxd(arcta
你首先要明白E(X)和D(X)都是一个常数,再利用相关的公式得到E(D(X))=1,D(E(X))=0
原式=∫_0^1▒〖(sinx/x)dx〗∫_x^2x▒〖dy=∫_0^1▒〖(sinx/x)*(2x-x)dx〗〗=∫_0^1▒〖(sinx)dx=-
考试时间紧迫,快点写上吧!如果(1+x)在根号外面:∫1/√x(1+x)dx设√x=t,则x=t²,dx=2tdt所以:原式=2∫dt/(1+t²)=2arctant+C=2arc
d(√(1+x²))=x/√(1+x²)dx所以:x³/√(1+x²)dx=x²d(√(1+x²))
记O(0,0),A(π/2,0),B(π/2,π/2),C(0,π/2).则积分域D:为正方形OABC,连接AC,则在D1:△OAC内,x+y
∵在区域D={(x,y)|x²+y²≤x,y≥0}中,1-x²-y²≥0∴∫∫|1-x²-y²|dxdy=∫∫(1-x²-y
第一题的积分区域没写清楚,无法做.第二题先画图,然后知道所求的结果可以写为:2*[∫(1-x*x/4)dx-∫(1-x*x)dx]前面定积分的下限是0,上限是2.后面的定积分的下限是0,上限是1.这样
这题我貌似再哪本书上看到过==||%2d是输入两列数,例如123456只会输入前面的两列数,12后面的数都被舍去了%*2d是跳过这个输入,也就是说,虽然那里有三个%d但实际上只读入了两个数而已如键盘输
1.∫(x+1)/(x²+2x+5)dx因为d(x²+2x+5)=(2x+2)dx=2(x+1)dx=1/2∫1/(x²+2x+5)d(x²+2x+5)因为∫1
换元法x=rcosax^2+y^2≤1所以0
∫∫D(x+6y)dxdy=∫dx∫(x+6y)dy=∫dx(xy+3y²)|=∫(5x²+75x²-x²-3x²)dx=∫(76x²)dx
这个双重积分,要利用双重积分的性质来解答.主要是利用单调性
d/dx∫(1,e^-x)f(t)dt=-e^-x*f(e^-x)=e^xf(e^-x)=-e^2x=-(e^-x)^(-2)所以f(x)=-x^(-2)
f(x)=x^2-x∫(0→2)f(x)dx+2∫(0→1)f(x)dx解这种类型题目,首先要了解∫(0→2)f(x)dx,∫(0→1)f(x)dx是常数为了简化直观,令a=∫(0→2)f(x)dx,
∫∫[D]arctan(y/x)dxdy=∫dθ∫arctan(sinθ/cosθ)rdr(作极坐标变换)=∫dθ∫r^2dr=(π/4)(8/3-1/3)=7π/12.再问:书本答案是3(π^2)/