∫arctant^2dt
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 14:05:53
直接对x求导算不出,所以先对t求导,再对x求导
∫(3sint+sin^2t)dt第一项直接积出,第二项利用二倍角降次,然后再积分
f(x)=∫(1→x²)e^(-t)/tdtf'(x)=2x·e^(-x²)/x²=2e^(-x²)/xf(1)=0,∵上限=下限∫(0→1)xf(x)dx=∫
这个原函数不是初等函数,写不出来
cost^2是t平方的余弦值还是t余弦值的平方?是这样,类似∫√(1-ksint^2)dt(0
解题思路:由机械能守恒定律可以判断ABD是可能的,由圆周运动的规律,可以确定D不可能。解题过程:见附件
题目最后一个x是否应该为t?如果是,解答如下lim(x→+∞)∫[0,x](arctant)²dt/√(t²+1)=lim(x→+∞)∫[0,x](arctant)²d(
求函数f(x)=(0,x)∫(t+1)arctantdt的极值令df(x)/dx=(x+1)arctanx=0得驻点x₁=-1,x₂=0为书写简便,先求不定积分.∫(t+1)a
积分项与x无关,对x求导结果为0.
抱歉,上面掉了个系数根号2π,所以结果前面的系数为根号π再问:如果是∫[a,b]e^(t^2)dt呢再答:如果是e^(t^2),这个是不可积的
题目是∫[1/(3sint+sin²t)]dt还是∫[3sint+sin²(1/t)]dt请说明一下,不然没法帮你.再问:求不定积分:∫(3sint+(1/sint^2t))dt求
两个问题都不能用初等函数表示,虽然存在.对第二题,如积分限是R,则值是pi^0.5,pi是圆周率,这叫泊松积分
a∫1/sintdt=a∫1/(2sin(t/2)cos(t/2))dt【倍角公式】=∫1/(tan(t/2)[cos(t/2)]^2)d(t/2)【凑微分法】=∫1/(tan(t/2))d(tan(
再问:不好意思,再问一下,第二行的x’是可以再放进去的吗再答:再问:那是不是前面那部分直接写成∫(㏑x~2)f(t)dt就可以了,你不是说x’=1嘛再答:哪一部分?后面一步不就是这样写的么?这么写只是
不用计算可知∫sin(t^2)dt(0到1)是一个常数对常数求导结果为0
∫t^2*sin(t)dt=-∫t²dcost=-∫t²cost+∫costdt²=-t²cost+2∫tcostdt=-t²cost+2∫tdsin
∫1/(1+cost)dt,cos2t=2cos²t-1==>cost=2cos²(t/2)-1=∫1/[2cos²(t/2)]dt=∫sec²(t/2)d(t