∫6xy²dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 05:00:04
dy=xydx1/ydy=xdxln|y|=x²/2+C∴dy/dx=xy的通解为y=±e^(x²/2+C)e^(x²/2+C)表示±e的(x²/2+C)次方再
dy/dx=e^(xy)dy/e^y=e^xdx两边积分得-e^(-y)=e^x+C再问:你这样右边是e^(x+y)啊再答:噢令xy=p两边求导得y+xy'=p'y'=(p'-y)/x=(p'-p/x
(6xy^2-y^3)dx+(6x^y-3xy^2)dy=d(3x^y^-xy^3),∴原式=(3x^y^-xy^3)|,=(9x^-7x)|=9*7-7=56.再问:原式==(3x^y^-xy^3)
两端对x求导得y+xy'=e^(xy)*(y+xy')整理即可得dy/dx=y再问:y'=y+e^xy/e^xy-x?再答:是的啊,就是这样啦。
这是我的解答,希望对你有帮助,有疑问请追问,若满意还望采纳,祝生活愉快!
两边对x求导得cosx+y'cosy=y+xy'解出来y'就可以了再问:z=f(xy^2,x^2y)求δz/δx,δz/δy这个呢再答:令u=xy^2,v=x^2yδz/δx=f'u*u'x+f'v*
没错,就是利用了复合函数求导的乘法原理:(AB)'=A'B+AB'd(xy)/dx=ydx/dx+xdy/dx=y+xy'
就是把这dydx转为求导前的式子,然后再求导一遍验证一下对错.再问:就是算到最后有个积分搞不出来。求过程。
你好!两边对x求导:e^(xy)*(y+xy')-y^2=y'cosy解得y'=(y^2-ye^(xy))/(xe^(xy)-cosy)
x/[sec(xy)-y]dx/dy.
dx/dy-3xy=xy^2dx/x=(y^2+3y)dy两边积分得:lnx=y^3/3+3y^2/2+c==>x=exp(y^3/3+3y^2/2+c)=Cexp(y^3/3+3y^2/2)C常数
答案:2.过程不详述了.这个积分是跟路径无关的,因为原函数是一个函数(3xxyy-xyyy)的全微分.在这种情况下,积分值等于原函数在起始点值的差.
dx/dy+xy=-1积分因子:exp(∫ydy)=exp(y²/2)=e^(y²/2)dx/dy•e^(y²/2)+xy•e^(y²/
dy/dx=xy²+3xydy/dx=x(y²+3y)∫1/[y(y+3)]dy=∫xdx(1/3)∫(3+y-y)/[y(y+3)]dy=∫xdx∫[1/y-1/(y+3)]dy
答:xy=x-e^(xy)e^(xy)=x-xy=x(1-y)两边对x求导:(xy)'e^(xy)=1-y-xy'(y+xy')e^(xy)=1-y-xy'ye^(xy)+xy'e^(xy)+xy'=