∫0~1dx∫0~x^2dy ∫1~2dx∫0~2-xdy换顺序

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 21:06:12
∫0~1dx∫0~x^2dy ∫1~2dx∫0~2-xdy换顺序
∫(上限1,下限0)dx∫(上限1,下限x)x^2*siny^2dy

积分区域为一个三角形:0≤x≤1,x≤y≤1变换积分区域,把它表示为0≤y≤1,0≤x≤y则∫(0,1)dx∫(x,1)x²siny²dy=∫(0,1)dy∫(0,y)x²

交换积分次序 ∫(4,0)dx∫(x,2x^0.5)f(x,y)dy

x的范围是0到4,而y的范围是x到2√x画出积分范围,那么换成先对x积分的话,x的范围就是0.25y²到y,而y的范围是0到4,所以交换积分次序得到原积分=∫(4.0)dy∫(y,0.25y

计算二重积分:∫[0,1]dx∫[0,x^½]e^(-y²/2)dy

原式=∫dy∫e^(-y²/2)dx(作积分顺序变换)=∫(1-y²)e^(-y²/2)dy=∫e^(-y²/2)dy-∫y²e^(-y²/

变换积分次序∫(0,1)dy∫(-y,1+y^2)f(x,y)dx

原式=∫(-1,0)dx∫(-x,1)f(x,y)dy+∫(0,1)dx∫(0,1)f(x,y)dy+∫(1,2)dx∫(√(x-1),1)f(x,y)dy.

∫(上1下0)dx∫(上x下x^2)f(x,y)dy=?

你要做什么?这积分又不能算,是要交换积分次序吗?原式=∫[0→1]dy∫[y→√y]f(x,y)dx

计算∫(0,1)dx∫(x,1)e^(y^2)dy=

题目应该是e^(-y^2)交换积分次序:=∫(0,1)dy∫(0,y)e^(-y^2)dx=∫(0,1)ye^(-y^2)dy=1/2*∫(0,1)e^(-y^2)dy^2=1/2*(1-1/e)

交换积分次序∫(1,0)dx∫(x,0)f(x,y)dy+∫(2,1)dx∫(2-x,0)f(x,y)dy

∵根据积分上下限作图分析知,此积分区域是由直线y=x,x+y=2和y=0围城的三角形.∴∫(1,0)dx∫(x,0)f(x,y)dy+∫(2,1)dx∫(2-x,0)f(x,y)dy=∫(1,0)dy

计算积分 ∫(上限1,下限0)dx∫(上限1,下限x)siny^2dy

画图看二次积分的区域D={(x,y)|0≤x≤1,x≤y≤1}={(x,y)|0≤y≤1,0≤x≤y}于是∫(上限1,下限0)dx∫(上限1,下限x)siny^2dy=∫∫(D)siny^2dxdy=

∫[0,1] dx∫[-x^2,1] f(x,y)dy交换积分次序

∫[0,1]dx∫[-x^2,1]f(x,y)dy=∫[-1,0]dy∫[(-y)^(1/2),1]f(x,y)dx+∫[0,1]dy∫[0,1]f(x,y)dx

更换积分次序∫(0,2)dx∫(x,3x)f(x,y)dy

∫(0,6)dy∫(y/3,y)f(x,y)dx

交换积分次序:∫(0,1/2)dx∫(x,1-x)f(x,y)dy=

根据∫(0,1/2)dx∫(x,1-x)f(x,y)dy可以确定积分区域为y=x,y=1-x与y轴围成部分.(你自己可以画一下)∴交换积分次序后要分段即为∫(0,1/2)dy∫(0,y)f(x,y)d

y= ∫[0,x](t-1)^3(t-2)dt,dy/dx(x=0)

y=∫(t-1)^3(t-2)dt,dy/dx=(x-1)^3(x-2).