∫(xe^x^2-e^-2x)dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:58:27
∫(xe^x^2-e^-2x)dx
∫xe^x/√(e^x-2)dx,求积分~

换元法:令√(e^x-2)=t,则x=ln(t^2+2),dx=2t/(t^2+2)dt,原积分中的e^x=t^2+2全代入后发现(t^2+2)刚好消去,得∫2tln(t^2+2)dt=∫ln(t^2

∫xe^x/√(1+e^x)dx

设t=√(1+e^x),x=ln(t²-1),dx=2t/(t²-1)dt∫xe^x/√(1+e^x)dx=∫[ln(t²-1)*(t²-1)/t]*2t/(t

不定积分∫xe^(-2x)dx,

原式=(-1/2)*∫xd(e^(-2x))=(-1/2)*[xe^(-2x)-∫e^(-2x)dx=(-1/2)*xe^(-2x)+(1/2)*(-1/2)*e^(-2x)+c=(-1/2)*xe^

求解不定积分∫ xe^(x/2) dx ,

原式=2∫xe^(x/2)d(x/2)=2∫xde^(x/2)=2xe^(x/2)-2∫e^(x/2)dx=2xe^(x/2)-4∫e^(x/2)d(x/2)=2xe^(x/2)-4e^(x/2)+C

(xe^x)'-(e^x)'是怎么推到xe^x

前一个式子(xe^x)'-(e^x)'=(x'e^x+xe^x)-e^x=e^x+xe^x-e^x=xe^x

求∫{e^x(1+x)}/{(x-xe^x)^2} dx

看起来好高端的样子,青年人网上有名师指导,高数题就是很折磨人!

求不定积分∫xe^(x^2)dx?

∫xe^(x^2)dx=(1/2)e^(x^2))+C

计算∫(上限+∞下限0)xe^(-x)/(1+e^(-x))^2

∫xe^(-x)dx/(1+e^(-x))^2=∫xe^xdx/(1+e^x)^2=∫xde^x/(1+e^x)^2=∫xd(-1/(1+e^x))=-x/(1+e^x)+∫dx/(1+e^x)=-x

不定积分∫(xe^2x)dx

不定积分∫(xe^(2x))dx∫(xe^(2x))dx=1/2*∫xde^(2x)=1/2*[xe^(2x)-∫e^(2x)dx]=1/2*[xe^(2x)-1/2*e^(2x)]+C=1/4*e^

求导数f'(x)=1/2xe^2x–1/4e^2x

求f(x)=(1/2)xe^(2x)-(1/4)e^(2x)的导数.f'(x)=(1/2)[e^(2x)+2xe^(2x)]-(1/2)e^(2x)=xe^(2x)如果是求f'(x)=(1/2)xe^

求积分∫(xe^x)/{[(e^2-1)]^(1/2)}dx

integral(e^xx)/sqrt(e^x-1)dxFortheintegrand(e^xx)/sqrt(e^x-1),substituteu=sqrt(e^x-1)anddu=e^x/(2sqr

求不定积分∫(xe^x)/(e^x+1)^2

令y=e^x,x=lny,dx=1/ydy.原式=∫lny/(y+1)^2dy分部积分:令u=lny,v'=1/(y+1)^2则∫lny/(y+1)^2dy=-lny/(y+1)+∫1/y(y+1)d

∫f(x)dx=xe²*求f(x) e²*+2xe²* *是x

∫f(x)dx=xe²就是求导,因为xe²*是原函数,那么f(x)就是它的导数xe^2x`=e^2x+x*2e^2x就是e²*+2xe²*

∫[xe^x/(1+x)^2]dx

点击即可放大,哈哈!

求下列不定积分∫xe^x dx,∫e^xcos2xdx,∫e^2e^dx...

∫xe^xdx,=∫xde^x=xe^x-∫e^xdx=xe^x-e^x+c∫e^xcos2xdx=(1/2)∫e^xdsin2x=(1/2)e^xsin2x-(1/2)∫sin2xe^xdx=(1/

函数f(x)=0.5x^2 +e^x -xe^x

f'(x)=(0.5x^2+e^x-xe^x)'=x+e^x-e^x-xe^x=x-xe^x导数等于0时,x等于0请注意最后一项的求导结果(应用乘积函数的求导法则)(F(x)G(x))'=F(x)G'

∫ (0,+∞)xe^x/(1+e^x)^2dx,求出来了,但是感觉不对!

我觉得你算的是对的,没什么问题.再问:我知道呀,但是无穷那个怎么带进去得到ln2呀,最后出答案的地方不会!再答:-x/(1+e^x)这项应该会吧x-ln(1+e^x)=lne^x-ln(1+e^x)=

∫xe^x^2/(1-2e^x^2)dx怎么做,

∫xe^(x^2)/(1-2e^(x^2)dx=(-1/4)∫1/[2e^(x^2)-1]d(2e^(x^2)-1)=(-1/4)ln[2e^(x^2)-1]+C