∫(x y)ds,其中L是以O(0,0),A(1,0),B(0,1)为顶点的三

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 11:05:03
∫(x y)ds,其中L是以O(0,0),A(1,0),B(0,1)为顶点的三
设L为椭圆x^2/3+y^2/4=1,其周长为a,求∮(2xy+4x^2+3y^2)ds.

拆两部分,2xy为其中一部分,因其是以x为自变量的奇函数,而积分区域又是关于x对称的,所以这部分的积分为0.另一部分其实就是12啦(椭圆方程化一下就晓得了)即关于12求第一类曲线积分,结果为12aLZ

求曲线积分∫L(x^2+2xy-y^2)dx+(x^2-2xy-y^2)dy,其中L是沿着椭圆x^2/4+y^2/4=1

可以求得原函数U(x,y)=x^3/3+x^2*y-x*y^2-y^3/3+C.分别代入(2,0)跟(-2,0),作差得到结果为-(16/3),如楼主所言.

求下列第一型曲线积分 ∫L√(2y^2+z^2)ds,其中L为球面x^2+y^2+z^2=a^2与平面x=y的交线.

你的答案是正确的,书上给的答案错误.在计算∫Lds时应当用曲线的周长,所以你给出球大圆的周长是正确的.而书上说的椭圆2y^2+z^2=a^2其实是那个球大圆投影到XOY面后的椭圆,这个显然不是题中的曲

求曲线积分∫根号(x^2+y^2)ds,其中L为圆周x^2+y^2=-2y

http://zhidao.baidu.com/question/1894230337967359940.html?oldq=1那天我答得一道题,跟这个非常非常像,你比着做吧.

计算曲面积分∫根号下(x^2+y^2)ds,其中L:x^2+y^2=-2y,

积分曲线x^2+(y+1)^2=1所以参数方程是x=cost,y=-1+sint.t∈[0,2π]ds=√[(x't)^2+(y't)^2]dt=dt∫√(x^2+y^2)ds=∫√(-2y)ds=∫

计算曲线积分∫L(2xy+3sinx)dx+(x2-ey)dy,其中L为摆线 x=t-sint Y=1-cost 从点O

由于∂P/∂y=∂Q/∂x,因此积分与路径无关,重新选择积分路线L1:从O(0,0)到B(π,0),y=0,x:0→πL2:从B(π,0)到A(π,2)

求下列第一型曲线积分 ∫L|y|ds,其中L为球面x^2+y^2+z^2=2与平面x=y的交线

x²+y²+z²=2x=y∴2x²+z²=2所以L的参数方程为:x=y=cosθ,z=√2sinθ,0≤θ≤2πds=√(x'²+y'

设L是以O(0,0),A(1,0)和B(0,1)为顶点的三角形区域的边界,则曲线积分I=∫(L)x+yds的值

再问:非常感谢大神的答案,我只是想在问问ds是如何展开成关于dx,dy的,是线段的曲线积分公式吗?再答:是的,看三角形的三条直线取方程

设L是连接O(0,0)及A(1,1)的线段,则曲线积分∫L(X+Y)ds=

连接(0,0)及(1,1)的线段是y=x,dy/dx=1∫L(x+y)ds=∫(0→1)(x+x)√(1+(dy/dx)²)dx=∫(0→1)2x√(1+1)dx=√2*x²|(0

第一型曲线积分的问题:1.计算∫下标L|y| ds,其中L为右半单位圆周:x^2+y^2=1,x>=0

因为所给曲线为关于x轴对称的半圆吧?我们可以用对称性,直接研究第一象限中的曲线部分吧?再乘以2不完了吗?因此绝对值可以去掉了吧?用极坐标代换简单的……分别计算简单,没有什么捷径可走的,分成两个曲线计算

计算曲线积分(x^2+y)ds,其中L是以O(0,0),A(1,0),B(0,1)为顶点三角形边界

再问:L2为什么是0再答:先是我的答案对吗?再问:不是再答:那还说再问:相差L2那个长度再答:我知道了再问:恩说下再答:答案是2/3吗?再问:不是你上面漏了一个根号2的再问:我会做了,那一段看做y是变

计算 ∫ ∟(e^y+x)dx+(xe^y-2y)dy,其中L是以(0,0)为起点,(2,1)为终点的任意曲线

这题目不同上面题目终点是(1,1)(0,0)到(2,1)可以看作(0,0)到(2,0)到(2,1)(0,0)到(2,0)y=0x∈[0,2]代进式子∫L(e^y+x)dx+(xe^y-2y)dy=∫[

2.计算对弧长∫L(x^2+y)ds的曲线积分 ,其中L是:y=2x,点(0,0)到(1,2).

y=2x,则ds=√(1+2²)dx=√5dx∫(x²+y)ds=∫[0→1](x²+2x)√5dx=√5[(1/3)x³+x²]|[0→1]=4√5

高数曲面积分:计算∫(x+y)e^(x^2+y^2)ds 其中L为圆弧y=√(a^2-x^)和直线y=x与y=-x围成的

L由y=√(a²-x²)和y=x和y=-x围成参数化:t:-π/4→π/4x=acost,y=asintdx=-asintdt,dy=acostdtds=adt∫L(x+y)e^(

计算曲线积分:∫(L)(2xy^3-y^2cosx)dx+(1-2ysinx+3x^2y^2)dy.其中L是

计算曲线积分:∫(L)(2xy^3-y^2cosx)dx+(1-2ysinx+3x^2y^2)dy其中L是在抛物线2x=πy^2上由点(0,0)到(π/2,1)的一段弧.———————————————

求曲线积分∫(x+y)ds,其中L为曲线弧x=t,y=t^3,z=3t^2/√2(0<t<1)

尻,这么容易,照代不就行咯ds=√[(dx)^2+(dy)^2+(dz)^2]

求曲线积分I=∫L(e^(x^2+y^2)^(1/2)) ds,其中L为圆周x^2+y^2=R^2

I=∫L(e^(x^2+y^2)^(1/2))ds=∫Le^(R)ds=e^R∫Lds=e^R·2πR=2πRe^R