∫(e-t²)dt
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 06:16:07
letdF(x)=e^(-x^2)dxf(t)=∫(1->t^2)e^(-x^2)dx=F(t^2)-F(1)f'(t)=2tF'(t^2)=2te^(-t^4)∫(0->1)tf(t)dt=(1/2
φ(x)=∫(0~2x)t(e^t)dt=[te^t-e^t+C](0~2x)=2xe^(2x)-e^(2x)+1φ'(x)=[2xe^(2x)-e^(2x)+1]'=2e^(2x)+2x*2*e^(
显然积分项会得到一个常数所以令C=4∫f(t)dtf(x)=e^x+C代回C=4积分(e^t+C)dtC=4[e^t+Ct]|C=4(e+C-1-0)C=4e+4C-44-4e=3CC=(4-4e)/
f(x)=∫(1→x²)e^(-t)/tdtf'(x)=2x·e^(-x²)/x²=2e^(-x²)/xf(1)=0,∵上限=下限∫(0→1)xf(x)dx=∫
∫(0,x)f(t-x)dt=e^(-x²)+1令u=t-x0
lim(x→0+)∫(0~x)ln(t+e^t)dt/1+cosx=0/(1+1)=0
它的不定积分不是初等函数,不能用具体式子表示!
这是个可分离变量的微分方程dT/dt+C*T=E-B*T^4dT/dt=E-B*T^4-CTdT/(E-B*T^4-CT)=dt两边积分呀那个E、B、C是常数增加了解题的难度.
这个原函数不是初等函数,写不出来
给你一个不是很严密的做法,严格做法在同济大学高等数学教材中有(下册二重积分极坐标部分)设u=∫[-∞,+∞]e^(-t^2)dt两边平方:下面省略积分限u^2=∫e^(-t^2)dt*∫e^(-t^2
利用洛必达法则.即当分子和分母都趋于无穷小时,同时对分子和分母求导数原式=lim(X趋向于0)[2*∫(0到x)e^(t^2)*dt*e^(x^2)]/[x*e^(2*x^2)]=2*lim(X趋向于
∫(0→x)f(t-n)e^ndt=sinxf(x-n)e^n=cosxf(x-n)=(cosx)/e^nf[(x+n)-n]=cos(x+n)/e^nf(x)=e^(-n)cos(x+n)再问:f(
抱歉,上面掉了个系数根号2π,所以结果前面的系数为根号π再问:如果是∫[a,b]e^(t^2)dt呢再答:如果是e^(t^2),这个是不可积的
两个问题都不能用初等函数表示,虽然存在.对第二题,如积分限是R,则值是pi^0.5,pi是圆周率,这叫泊松积分
不用计算可知∫sin(t^2)dt(0到1)是一个常数对常数求导结果为0
那就数值积分helpquad.之类
当函数f(x)=∫tan^2(e^(2t+1))dt+A=A得到∫tan^2(e^(2t+1))dt=0因为tan^2(e^(2t+1))>=0所以只能是x=0所以f^(-1)(A)=0再问:sorr
∫t^2*sin(t)dt=-∫t²dcost=-∫t²cost+∫costdt²=-t²cost+2∫tcostdt=-t²cost+2∫tdsin
d/dx∫(1,e^-x)f(t)dt=-e^-x*f(e^-x)=e^xf(e^-x)=-e^2x=-(e^-x)^(-2)所以f(x)=-x^(-2)