∫( 3x-5)^10 dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:30:09
∫( 3x-5)^10 dx
∫(2^x)/((2^x)+3)dx

∫x^3/(9+x^2)dx=1/2∫x^2/(9+x^2)dx^2(x^2=t)=1/2∫t/(9+t)dt=1/2∫(t+9-9)/(9+t)dt=1/2∫[1-9/(9+t)]dt=1/2t-9

∫x√(x-5)dx

令t=√(x-5)去求解x=5+t^2dx=2tdt原积分=∫(5+t^2)*t*2tdt=∫(10t^2+2t^4)dt=10/3*t^3+2/5*t^5+c将t=√(x-5)代回结果即可得到结果.

∫cot(3x)dx.

原式=∫cos(3x)/sin(3x)dx=1/3∫1/sin(3x)dsin3x=1/3ln绝对值sin3x+c

∫ dx/(x+5)(x-1) 和 ∫ 3x-19 dx / (x+3)(3x-5)

第一个题把1/(x+5)(x-1)拆成(1/(X-1)-1/(x+5))/6是关键!然后接下来就好办啦结果是(ln(x-1)-ln(x+5))/6第二个题嘛道理跟第一个一样只是拆成2项的时候比较难看出

∫(1-x)^2/x^3 dx

∫(1-x)^2/x^3dx=∫(1-2x-x^2)/x^3dx=∫(x^(-3)-2x^(-2)+x^(-1))dx=1/(-3+1)x^(-3+1)-1/(-2+1)x^(-2+1)+ln|x|+

求不定积分∫5^(3x)dx

∫5^(3x)dx=1/3*∫5^(3x)d(3x)=1/3*5^3x/ln5+C=5^3x/(3ln5)+C

∫2x²+3x-5/x+3dx

设x+3=t→dx=dt,代入原式得∫[(2x²+3x-5)/(x+3)]dx=∫[(2(t-3)²+3(t-3)-5)/t]dt=∫[2t+(4/t)-9]dt=t²+

∫(x-1)^2/x^3 dx

∫(x²-2x+1)/x³dx=∫(1/x-2/x²+1/x³)dx=lnx+2/x-2/x²+C

∫x^3/1+x^2 dx

∫x^3/(1+x^2)dx=∫[x^3+x-x]/(1+x^2)dx=∫x-x/(1+x^2)dx=x²/2-1/2ln[1+x^2]+c你的好评是我前进的动力.我在沙漠中喝着可口可乐,唱

求∫√(sin^3x-sin^5x)dx

我知道这个题是个定积分题,请追问我给出积分限.我按我以前做过的同一题给你做吧,积分限是0→π∫[0→π]√(sin^3x-sin^5x)dx=∫[0→π]√[sin³x(1-sin²

∫1/[x*(x^10+2)]dx

令u=x^10,du=10x^9dx=10u/xdx,dx=x/(10u)du∫dx/[x(x^10+2)]=(1/10)∫du/[u(u+2)]du=(1/20)∫2/[u(u+2)]du=(1/2

∫10^x*2^3x dx怎么算?

=∫10^x*8^xdx=(1/ln80)*∫(80)^x*ln80dx=(80)^x/ln80+C

∫4x-3√x-5/x*dx求解

每一个分出来积分,答案是2x^2-2x^(3/2)-5lnx

∫x/(x^2+5)dx

∫x/(x^2+5)dx=1/2(ln|x^2+5|)+C

∫ xcos(x/3) dx ...

∫xcos(x/3)dx=3∫xdsin(x/3)=3xsin(x/3)-3∫sin(x/3)dx+C=3xsin(x/3)+9cos(x/3)+CC为任意常数

∫dx/x(x^5+4)

∫1/[x(x^5+4)]dx=¼∫[(x^5+4)-x^5]/[x(x^5+4)]dx=¼∫[1/x-x^4/(x^5+4)]dx=¼[∫1/xdx-1/5∫1/(x^

若∫ f(x)dx=F(x)+C,∫ f(3x+5)dx=

∫f(3x+5)dx=(1/3)×∫f(3x+5)d(3x)=(1/3)×∫f(3x+5)d(3x+5)=(1/3)F(3x+5)+C