∠c=90°,AM是中线,MN⊥AB,垂足为N,求证:AN²-BN²=AC²
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:27:20
连接CM,则CM为斜边AB上的中线,就有:AM=CM,∠CAM=∠ACM.作图可知,点N和点C在斜边AB的两侧,已知,MN‖AC,可得:∠CAM=∠AMN.因为,AM=AN,所以,∠AMN=∠ANM;
证明:过A作CB平行线,交CD延长线于F∵CN=MN∴∠1=∠3=∠4(等边对等角、对顶角)又 AF//CB∴∠1=∠F(内错角相等)∴∠4=∠F∴AM=AF(等角对等边)∵CD是△ABC的
由于C=90°则AC²=AM²-CM²由AM为中线得CM=BMAC²=AM²-BM²由于MN垂直于AB得BM²=MN²+
你要说明的问题是AN^2-BN^2吧AN^2=AM^2-MN^2AN^2-BN^2=AM^2-(MN^2+BN^2)=AM^2-BM^2又BM=CMAN^2-BN^2=AM^2-CM^2=AC^2
过A作CB平行线,交CD延长线于F,使得AF//CB因为CN=MN所以角MCN=角CMN=角AMD又因为AF//CB由两直线平行,内错角相等角MCN=角AFD故角AFD=角AMD所以AM=AF下面再证
∵MN⊥AB,∴由勾股定理,有:AN^2=AM^2-MN^2、BN^2=BM^2-MN^2,∴AN^2-BN^2=AM^2-BM^2.∵CM=BM,∴AN^2-BN^2=AM^2-CM^2.·····
1.证明:作辅助线CM.M是AB中点,∠C为直角,据直角三角形性质,可知CM=AM=BM.所以∠ACM=∠CAM.又因为MN‖AC,所以∠CAM=∠AMN.因为AM=AN,所以∠AMN=∠ANM.所以
1:BN^2+MN^2=BM^2=CM^2=AM^2-AC^2->BN^2+MN^2+AC^2=AM^22:AM^2=MN^2+AN^23:BN^2+MN^2+AC^2=MN^2+AN^2->AN2-
证明:在Rt△ACM中,AC²=AM²-MC²,MC=MB,∴AC²=AM²-MB²在Rt△ANM中,AM²=AN²+M
证明:MN=AC连接CM∵△ABC是Rt△∴MC=1/2AB∵M是AB的中点∴AM=1/2AB∴AM=CM∴∠MCA=∠MAC∵MN‖AC∴∠ANM=∠MAC∴∠ANM=∠MCA∴∠MAN=∠AMC∴
AN的平方=AM的平方-MN的平方BN的平方=BM的平方-MN的平方由上面两个式子可得:AN的平方-BN的平方=AM的平方-BM的平方由于M是B,C的中点,所以:BM=CM由上可得:AN的平方-BN的
作AE∥BC交CD延长线于E,∴∠EAD=∠CBD,∠E=MCN∠ADE=∠BDC,且AD=BD∴△ADE≌△BDC∴AE=BC,又∵CN=MN∴∠MCN=∠CMN,又∵∠AME=∠CMN∴∠AME=
由题意可知△ANM△ACM△MNB为直角三角形,由勾股定理则有:AN²+MN²=AM^2=AC²+CM²①BM²=MN²+BN²②
1:BN^2+MN^2=BM^2=CM^2=AM^2-AC^2->BN^2+MN^2+AC^2=AM^22:AM^2=MN^2+AN^23:BN^2+MN^2+AC^2=MN^2+AN^2->AN2-
过A作CB平行线,交CD延长线于F,使得AF//CB因为CN=MN所以角MCN=角CMN=角AMD又因为AF//CB由两直线平行,内错角相等角MCN=角AFD故角AFD=角AMD所以AM=AF下面再证
∵MN⊥AB,∴由勾股定理,有:AN^2=AM^2-MN^2、BN^2=BM^2-MN^2,∴AN^2-BN^2=AM^2-BM^2.∵CM=BM,∴AN^2-BN^2=AM^2-CM^2.·····
证明:根据勾股定理AN^2=AM^2-MN^2BN^2=BM^2-MN^2AC^2=AM^2-CM^2所以AM^2=AC^2+CM^2MN^2=BM^2-BN^2带入AN^2=AC^2+CM^2+BN
证明:在直角三角形ACM中,由勾股定理,得,AM^2=AC^2+CM^2在直角三角形BMN中,由勾股定理,得,MN^2=BM^2-BN^2在直角三角形AMN中,由勾股定理,得,AN^2=AM^2-MN
在RT△ACM中:AC²=AM²-CM²在RT△AMN中:AM²=AN²+MN²在RT△BNM中:MN²=BM²-BN&
∵MN⊥AB∴△AMN和△BMN是直角三角形∴AN²=AM²-MN²……(1)BN²=BM²-MN²……(2)(1)-(2)得:AN