√R2 X2求导
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 01:36:59
y=√(lnx)=(lnx)^(1/2)y'=1/2*(lnx)^(1/2-1)*(lnx)'=1/[2√(lnx)]*1/x=1/[2x√(lnx)]
f(x)=|x|x~Rf(x)=xx>=0f'(x)=1f(x)=-xx<0f'(x)=-1
解y=e^√x²+1y‘=(e^√x²+1)'=e^√x²+1(√x²+1)'(x²+1)=e^√x²+1[1/2(x²+1)^(
y=x^(3/2)-3x^(1/2)+3x^(-1/2)求导:(3/2)x^(1/2)-(3/2)x^(-1/2)-(3/2)x^(-3/2)
再问:书上答案是-xtanx²√﹙cosx²﹚再答:一样的,你把我那个结果的分子与分母同时乘以根号下余弦的平方(就是同乘以分母),就是你那个结果
x/√(1+e^x)1/√(1+e^x)-1/2*xe^x/√(1+e^x)^3
y'=(√x)'*(sinx+cos1)+√x(sinx+cos1)'=(sinx+cos1)/(2√x)+√xcosx
以这个为例,大体思路都是这样的
(ln√x)'=1/√x*(√x)'=1/√x*1/(2√x)=1/(2x)
再问:是分数形式,不是乘积再答:额(⊙o⊙)…,抱歉哦,离高考过去太久时间了,公式都忘得差不多了,能否给一些相关的公式过来?再问:ux/vx=(u'xvx-uxv'x)/v^2x再答:最后一个你是不是
令√x=t,那么原积分=∫1/(t+t^4)d(t^2)=∫2/(1+t^3)dt=2/3*∫[1/(1+t)-(t-2)/(t^2-t+1)]dt显然∫1/(1+t)dt=ln|1+t|+C(C为常
设f(x)=√(2-x),g(x)=√x,h(x)=2-x那么:f(x)=g[h(x)],g'(x)=x^(1/2)=1/2x^(-1/2),h'(x)=-1根据求导法则:f'(x)={g(h)}'(
即∫x的1/2次dx=x的(1/2+1)次方/(1/2+1)+C=2/3*x√x+C
解题思路:【解析】(1)由,利用导数的几何意义能求出实数a的值.(2))由已知得=,x>0,由题意知g′(x)<0在(0,+∞)上有解,即x++1-b<0有解,由此能求出实数b的取值范围.(3)由=,
Y=√(2X+4)-√(X+3)=(2X+4)^0.5-(X+3)^0.5=0.5×[(2X+4)^(0.5-1)]×(2X+4)'-0.5×[(X+3)^(0.5-1)]×(X+3)'=0.5×[(
[√(x+√x)]'=(1/2)[1/√(x+√x)](x+√x)'={1/[2√(x+√x)]}[1+(1/2)(1/√x)]={1/[2√(x+√x)]}(2√x+1)/(2√x)=[2(√x)+
y'=1/2*(x^2+x)^(-1/2)*(x^2+x)'=(2x+1)/2√(x^2+x)
按部就班套公式
y=x-x^(-1/2)所以y'=1-(-1/2)*x^(-3/2)=1+1/(2x√x)