√1-x²arcsinx不定积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 23:06:08
∫xarcsinxdx=∫arcsinxd(x²/2)=(1/2)x²arcsinx-(1/2)∫x²/√(1-x²)dx,x=sinz=(1/2)x²
原式=∫arcsinx*dx/√(1-x²)=∫arcsinx*darcsinx=(arcsinx)²/2+C
分式1/(x²-1)有意义,则x²-1≠0,即x≠-1且x≠1;arcsinx有意义必有-1≤x≤1;√x有意义必有x≥0因此y=1/(x²-1)+arcsinx+√x的
答:1.∫arcsinxdx可用分部积分原式=xarcsinx-∫x/√(1-x^2)dx=xarcsinx+√(1-x^2)+C2.∫e^(√x+1)dx换元,令√(x+1)=t,则x=t^2-1,
先等价无穷小替换e^x-1~x(x-->0),然后用L'Hospital法则,……
答:arcsinx就是sinx的反函数;而一般而言,反函数都习惯用:f^(-1)(x)来表示,因此,两个只是表示差别和习惯而已,都是同一个东西
分母可拆成x2arcsinx和1,这样原定积分可分为两个定积分之和.前者是奇函数,定义域又关于原点对称,故为0后者的原函数为arcsinx,故可用微积分基本公式做出最后两者加起来便行再问:�Ҷ��ˣ�
过程我难得打了,就告诉你结果吧!1/4.再问:arcsinx^2等于什么?是等于x^2么?为什么
...添个负号.-1/根号(1-x^2)再问:arccosx的导数是多少。。?-arcsinx和arccosx的导数是一样的?如果你经过思考了给出过程。谢谢。如果没只是随便一说,请回答前动下脑子再答:
答案应该是0.求(x-1)arcsinx在x趋于1时的极限,它的两部分(x-1)和arcsinx的极限值都是可求的,(x-1)当x趋近于1时,极值为0,即为无穷小.而arcsinx在x趋近于1时,极值
sin(arcsinx)=x而sin²a+cos²a=1所以原式=√(1-x²)
利用taylor展开,当x→0时,arcsinx=x+(x^3)/6+o(x^3)原式=lim[1+(x^2)/6+o(x^2)]^(1/x^2)=e^(1/6)重要极限
令u=arcsinX,v=arccosX则sinu=cosv=X因为cosv=sin[(π/2)-v]=sinu所以(π/2)-v=uu+v=π/2即:arcsinX+arccosX=π/2,X∈[-
本题其实是两个问题,下面分别
设arccosx=y,则x=cosy,y∈[0,π],所以siny>=0,siny=根号(1-cos^2y)=根号(1-x^2),这就证明了sin(arccosx)=根号(1-x^2).类似地,sin
证明:令arcsinx=t.则x=sint.lim(arcsinx/x)=limt/sint=1.arcsinx~x
lim(x→0)(e^x-sinx-1)/(arcsinx^2)=lim(x→0)(e^x-sinx-1)/x^2(0/0)=lim(x→0)(e^x-cosx)/(2x)(0/0)=lim(x→0)
[x根号下(1-x^2)+arcsinx]'=√(1-x²)+x×1/2×1/√(1-x²)×(-2x)+1/√(1-x²)=√(1-x²)-x²/√