Σ是柱面x2 y2=a2介于平面z=0和z=h(h>0)之间的部分.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 21:06:02
Σ是柱面x2 y2=a2介于平面z=0和z=h(h>0)之间的部分.
∫∫∫Ωxzdsdydz,其中Ω是由平面x=y,y=1,z=0及抛物柱面y=x^2所围成的闭区域

题目出错了,区域不封闭,向上的方向是开口的,估计原题的意思是把y=1改成z=1.

已知正有理数a1是根号3的一个近视值,设a2=1+2÷(a1+1),求证:根号3介于a1和a2之间

a2-√3=1+2/(a1+1)-√3=(a1+3-√3*a1-√3)/(a1+1)=((a1-√3)-√3*(a1-√3))/(a1+1)=(a1-√3)*(1-√3)/(a1+1)①假设a10,分

计算曲面积分∫∫∑ z^2 dS其中 ∑为柱面x^2+y^2=4 介于0≤z≤6的部分

考虑yz面Σ₁:x=√(4-y²)或Σ₂:x=-√(4-y²)dx/dy=-y/√(4-y²)dx/dz=0∫∫Σz²dS=2∫∫Σ&#

关于微分几何的问题求椭圆柱面x2/a2+y2/b2=1在任意点的切平面方程,并证明沿每一条直母线,此曲面只有一个切平面.

椭圆柱面x2/a2+y2/b2=1在任意点(x0,y0,z0)的切平面方程x0x/a²+y0y/b²=1,不含z,母线{x=x0,y=y0}上的每个点的切平面都是此平面

设柱面的淮线为:y=X^2+Z^2,y=2X,母线垂直于准线所在平面,求这柱面方程.

由于,柱面的准线为x=2z,x=y*y+z*z.(将原题中的X=2z改写为:x=2z)而x=2z为一平面.故它就是准线所在平面.即所求柱面的母线垂直于此平面.此平面(x=2z)的法向量为n=(1,0,

高等数学空间解析几何请问空间曲线L在xoy平面上的投影柱面方程是平面图形还是立体图形?是立体柱面的话,“xoy平面上的投

空间曲线L在xoy平面上的投影柱面方程是立体图形这儿只是表述的误解应该是向xoy面投影时的投影柱面方程.

设正理数a1是根号3的一个近似值,令a2=1+[2/(1+a1)],证明根号3介于a1与a2之间

a1变大时a2变小假设a1=根号3则a2=根号3a1大于根号3a2小于根号3a1小于根号3a2就大于根号3所以根号3介于a1与a2之间

曲面z=(x^2+y^2) 被柱面^2+y^2=4及xoy平面所围成的立体体积

转化为极坐标求解则z=r^2;dv=2πrdr*z(r)=2πr^3dr;对dv求积分,上限为2,下限为0;

高数题设曲面∑为柱面x^2+y^2=1介于平面z=-2与z=2之间的部分,则曲面积分∫∫(∑)(x^2+yz+y^2)d

首先要知道,投影时不能像xoy面投影的,因为在xoy面上投影为线条,没有范围的……其实这个问题不用投影就可以解决的,先看看曲面∑是关于xoz面对称的,但是积分函数中yz一项为y的奇函数,由对称性可知,

计算二重积分(y-z)x^2dzdx+(x+y)dxdy其中是柱面x^2+y^2=1及平面z=0

=∫x(yzx^2-1/2(xz)^2)dx+∫y(1/2x^2+xy)dy=[1/3yzx^3-1/6z^2x^3+1/2x^2y+1/2xy^2]|z[0,2]、y[0,1]、x[0,1]=1

计算曲面积分如图其中曲面是柱面x^2+y^2=1被平面z=0和z=3所截得的在x》=0的部分,取外侧

高斯公式法.取Σ:x²+y²=1,前侧补Σ1:z=3,上侧补Σ2:z=0,下侧补Σ3:x=0,后侧∫∫(Σ+Σ1+Σ2+Σ3)ydzdx=∫∫∫Ω(0+1+0)dxdydz=∫∫Ω

设∑是柱面x^2+y^2=9及平面z=0,z=3所围成的区域的整个边界曲面,计算∫∫(x^2+y^2)dS

好好学高数,这是以后学专业课的基础,不要网上问了,有人回答答案也是似是而非的,不会了问学霸同学,或者老师答疑的时候去问问再问:TT身边没有学霸。。课已经讲完了唉再答:x²+y²=9

设1<a1<根号2 ,令a2=1+1/1+a1.证明根号2介于a1、a2之间

因为1再问:第三步是怎么的出的啊?谢了再答:1/(1+√2)=(√2-1)/[(√2-1)(√2+1)]=V2-1再问:呵呵。我问的是整个第三步呢再答:2

求曲面x^2+y^2=z,柱面x^2+y^2=4及xoy平面所围成立体体积

所围成立体体积=∫∫(x²+y²)dxdy(所围成立体体积在xoy平面上的投影:x²+y²≤4)=∫dθ∫r²*rdr(作极坐标变换)=2π*(2^4

已知实数x,y满足x2+y2=2x,则x2y2的取值范围是______.

由x2+y2=2x,得y2=2x-x2≥0,∴0≤x≤2,x2y2=x2(2x-x2)=2x3-x4.设f(x)=2x3-x4(0≤x≤2),则f′(x)=6x2-4x3=2x2(3-2x),当0<x

求柱面z=x^2在平面区域D:0

我没有软件,写不出式子,利用直角坐标系,二重积分写成二次积分,x上限1,下限0,y上限1,下限0,被积函数,根号下1+4x^2

用柱面坐标计算三重积分(Ω)∫∫∫xyzdy,其中Ω是柱面x^2+y^2=1与平面z=0与z=3所围成的面积

"使用柱坐标系:0≤θ≤π/2,0≤ρ≤1,0≤z≤1∫∫∫xydv=∫(0→π/2)dθ∫(0→1)ρdρ∫(0→1)ρ^2sinθcosθdz=∫(0→π/2)dθ∫(0→1)ρ^3sinθcos

求柱面x^2+y^2=1,平面x+y+z=3及z=0围成立体的体积

∫∫(3-x-y)dxdy=∫∫(3)dxdy=3π.【关键是利用被积函数奇偶性与积分区域对称性】因为x关于x为奇函数,D关于y轴对称,所以∫∫(x)dxdy=0类似地,有∫∫(y)dxdy=0