ρ=a(1-cosφ)所围图形面积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 11:29:17
心形p=a(1+cosθ)(a>0)所围成的图形对称于极轴,所求的面积是极轴以上部分面积A的两倍对于极轴以上部分的图形,θ的变化区间是[0,Pai],相应于[0,派]上任一小区间[θ,θ+dθ]的窄曲
马小跳童鞋,我来了,看好了 再问:���֪��ͼ���ǻ����ó��
等式第一项是极坐标通用求面积公式再问:答案是1/3π+2-√3啊再答:它的图像应该是一个哑铃。最远处极半径是√2.,最近处是0.怎么会是r=1以内的呢。。。好像不能围成图形啊日。我画错图了。稍等哦
心形曲线r=a(1+cosb)形状是绕了一圈他的定义域是[0,2π]但是他关于x轴对称我们求面积的话,只要求上半部分就好了因为下面的面积和上面一样所以我们只做[0,π]上的面积,再前面乘以那个2就行了
心形曲线r=a(1+cosb)形状是绕了一圈他的定义域是[0,2π]但是他关于x轴对称我们求面积的话,只要求上半部分就好了因为下面的面积和上面一样所以我们只做[0,π]上的面积,再前面乘以那个2就行了
用极坐标系下求面积的方法,定积分应用中有相关的公式,套公式即可,也可用极坐标的二重积分(3πa^2)/2
这种积分题还是比较麻烦的,真想用matlab给你做.这是个“鸡蛋图”只求y大于0部分的面积,记为s1极坐标化为参数方程:x=2a(2+cost)cost,y=2a(2+cost)sints1=int(
x是角度吧?是条心性线,要用定积分,从0积分到2π.∫r*rdx=∫(a+aCosx)*(a+aCosx)dx=a*a∫dx+2a*a∫Cosxdx+a*a∫CosxCosxdx=2aaπ+0+aaπ
π×(rsint)^2×d(rcost)积分积分上下限为0到π/4把r=4(1+cost)代入等于-64π×(sint+sintcost)^2×(sint+costsint)×dt积分就行了
所围平面图形绕极轴旋转一周而成的旋转体的体积=6.63 表面积=17.20 如图所示:
S=∫ydx=∫a(1-cost)d(a(t-sint))=a^2∫(1-cost)^2dt希望采纳
将极坐标转换成直角坐标后就很容易知道这是两条怎样的曲线.转换公式是: r=√(x²+y²), cosθ =x/√(x²
联立两个方程r=3cosθr=1+cosθ当两个相等时,3cosθ=1+cosθ即2cosθ=1,θ=π/3和-π/3先对心形线在-π/3到π/3的面积求出来,因为上下对称,所以面积是上面一块的两倍S
再答:��ʮ���ѧ���飬רҵֵ��������������Ͽ��ҵĻش
3/2乘π乘a^2用极坐标来做再问:求具体过程再答:关于极轴对称那么整个面积S=2s1=2X积分号(下线0)(上限π)『1/2乘[a(1+cosθ)]^2dθ』很简单的积分自己脱了括号算下就出来了再问
这么专业的问题啊?!我学文的不知道啊过来捧捧场没人回答的话把分给我吧
由(1)得cosa=x/(4-x),(2)除以(1)得tana=y/x,根据1+(tana)^2=1/(cosa)^2可得1+(y/x)^2=(4-x)^2/x^2,化简得y^2=-8(x-2).它是
如图.公式在上大书上p309
n乘以右边等式2pai积分就对了