|sinx|的绝对值得极限
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 10:10:01
存在.从左边趋近于0的时候,极限为-1从右边趋近于0的时候,极限为+1可以从弧度的定义出发来证明这个结论
楼主的对这部分的想法混淆得太厉害,真是剪不断,理还乱.我也不是老师也不知道给你从何说起,就一个问题一个问题的来吧.第一题:lim(x+sinx)/x(x→∞)=lim(1+sinx/x)=1+lims
=lim(1/cosx-1)/(sinx)^2=lim(1-cosx)/(sinx)^2cosx=lim2(sin(x/2))^2/(sinx)^2=(1/2)lim[(sin(x/2))^2/(x/
乘积的绝对值等于各乘数绝对值得乘积
lim(x→0)(tanx-sinx)/(sinx*sinx*sinx)=lim(x→0)(1/cosx-1)/(sinx*sinx)=lim(x→0)(1-cosx)/(cosx*sinx*sinx
依题它是趋向于0.又式子是0/0型,所以原式=(1-cosx)/(1+cosx)=(x²/2)/2=x/2=0再问:������再答:哪里看不懂再问:�ǵ�1-cosx���Dz�再答:x趋于
最小检出限.指产生一个能可靠地被检出的分析信号所需要的某元素或者某样品的最小浓度或含量.通俗的说,就是至少需要多少量的样品,才能使仪器有所响应(区别于仪器噪音).
【x->∞0≤|sinx/x|≤1/|x|-->0,0≤|cosx/x|≤1/|x|-->0故:sinx/x,cosx/x为无穷小量.】lim(x->∞)(x+sinx)/(x+cosx)=lim(x
可以分子为有界(限?)量,分母为无限量,分式为0
方法一求极限x➔0lim[(tanx-sinx)/sin³x]=lim(1/cosx-1)/(sinx)^2=lim(1-cosx)/(sinx)^2cosx=lim2(sin
取对数ln(sinx)^x=xlnsinx=lnsinx/(1/x)罗比达法则=cosx/sinx/(-1/x²)=-x²cosx/sinx=【-2xcosx+x²sin
方法一:0/0型极限,用L'Hospital法则lim(x→0)sin²x/(1-cosx+sinx)=lim(x→0)(sin²x)'/(1-cosx+sinx)'=lim(x→
第三个,绝对值最小,即误差最小
可设y=x^sinx.两边取对数得,lny=sinx*lnx.(1).易知,当x--->0时,sinx*lnx为0*∞型,由洛必达法则,sinx*lnx=(lnx)/[1/sinx]=(1/x)/[-
你说的x/(1+sinx)在x趋近于0的极限不应该就是0么再问:是我说的有问题大神帮我看看这个吧这个是错的错在第三部分子中的那个1和后面的x^2我就是分子分母同乘x在洛必达,望说明叩谢~
取对数ln原式=lim(x→0)sinxln(tanx)=lim(x→0)ln(tanx)/(1/sinx)=lim(x→0)(1/tanx*1/cos^2(x))/(-1/sin^2(x)*cosx
先求导:得(1-cosX)/(1+cosX),最后结果0
极限不存在,也不是无穷大