{ s =0; s2 =0; tf.setText(s); }什么意思

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 20:14:24
{ s =0; s2 =0; tf.setText(s); }什么意思
微积分题求解设f(x)可微,f(0)=0,f'(0)=1,F(x)=∫tf(x²-t²)dt(注:积

变量代换:x²-t²=u两边微分:0-2tdt=du在没有积分之前,变量是t,x是积分的上限所以:tdt=-(1/2)du又因为:x²-t²=u,t:0--->

设f(x)连续,d/dx∫上标x下标0tf(x^2-t^2)dt=?

找你这道题找得我好辛苦啊!解法一:换元法!令u=x∧2-t∧2,则t=√(x∧2-u)当t=0时,u=x∧2,当t=x时,u=0.且dt=(-1)/2√(x∧2-u)∴原式=∫f(u)*√(x∧2-u

已知tf(2x-t)dt(0,x)的不定积分,且f(1)=1,求f(x)dx(1,2)的不定积分

F(x)=∫(0,x)tf(2x-t)dt(2x-t=u)=∫(2x,x)(2x-u)f(u)d(-u)=∫(x,2x)(2x-u)f(u)du=2x∫(x,2x)f(u)du-∫(x,2x)uf(u

f(x)在区间[0,1]上连续,则函数F(x)=∫(0,x) tf(cost)dt在[-π/2,π/2]是 A.奇函数B

F'(x)=xf(cosx),这个函数显然是奇函数,奇函数的原函数必为偶函数.选B.选择题要用最快捷的方法解决,不能花太多时间.再问:偶函数的原函数是什么呢?再答:偶函数的原函数是奇函数或非奇非偶。原

设f(x)连续,Y=∫0~X tf(x^2-t^2)dt 则dy/dx=?

y=∫[0,x]tf(x²-t²)dt令u=x²-t²,du=-2tdt当t=0,u=x²;当t=x,u=0y=∫[x²,0]tf(u)*d

matlab中的t=0:0.01:5;u=sin(t);sys=tf(100,[1 5 100]);lsim(sys,u

如果你用的版本有单位阶跃函数heaviside,则:t=0:0.01:5;u=2*heaviside(t);sys=tf(100,[15100]);lsim(sys,u,t)如果你用的版本没有单位阶跃

关于微分方程与定积分的题目,求可导函数f(x),使得∫[x,0]f(t)dt=x+∫[x,0]tf(x-t)dt

x和0谁是上限谁是下限啊,我当作x是上限,0是下限等式右边的那个积分需要先换元,令x-t=u,则dt=-du,t从0变到x,则u从x变到0那个积分可化为:-∫[0,x](x-u)f(u)du=x∫[x

EXO-TF=死忠饭甚么意思

应当是exo原来的粉丝,脱饭了喜欢tf的.剩下来的就是死忠饭,死忠饭就是永久不变情意的fan查看原帖>>满意请采纳

(s3-s2)/s2-(s2-s1)/s1=?

(s3-s2)/s2-(s2-s1)/s1=s3/s2-1-s2/s1+1=s3/s2-s2/s1

求解答数据结构,T[S1[0]+1..S1[0]+S2[0]]=S2[1..S2[0]]的自然语

这是严慰敏的教材吧,用的是伪码这是用于串的顺序存储结构,下标0存放串的长度,S1[0]为S1的串长,s2[0]为s2的串长,有效的串值从下标1才开始到下标s[0]结束T[S1[0]+1..S1[0]+

考研概率论E(S2)=D(S)?

不成立!D(s)=E(S^2)-(E(S))^2除非S的期望E(S)=0否则E(S2)>D(S)

定积分问题:F(x)=积分( 0到x)tf(t) dt 求F'(x)

积分上限函数求导结果就是将x代到被积函数中的t里,得到F'(x)=xf(x)

定积分∫tf(x-t)dt(0到x)=1-cosx,则∫f(x)dx(0到π/2)

连点分也不给,不过做出来了就写给你吧~

请网友高手解释下[∫(0,x)tf(t)dt]'=xf(x)-∫(0,x)f(t)dt积分求导的推导过程,

∵[∫(0,x)f(t)]'=f(x)[∫(0,x)xf(t)dt]'=[x∫(0,x)f(t)dt]'=x*[∫(0,x)f(t)dt]'+(x)'*∫(0,x)f(t)dt=x*f(x)+1*∫(

设f(x)满足 ∫0到x tf(x-t)dt=sinx+kx ,求k和f(x)

∫(0到x)tf(x-t)dt=sinx+kx令r=x-t,则dt=-dr,于是∫(0到x)tf(x-t)dt=∫(x到0)(x-r)f(r)(-dr)=∫(0到x)[xf(r)-rf(r)]dr=x

∫ 0到x tf(x-t)dt=∫ 0到x (x-t)f(t)dt 为什么?

令u=x-t0≤t≤xt=x-u则∫0到xtf(x-t)dt=∫x到0(x-u)f(u)d(x-u)=∫x到0(u-x)f(u)du=∫0到x(x-u)f(u)du与积分变量无关,所以∫0到xtf(x

f(x)在【0,a】上连续可导,且f(a)=0.证明:存在一点t属于(0,a),使f(t)+tf'(t)=0

证明:构造函数y=xf(x),因为y(0)=0,y(a)=0,且y‘=f(x)+xf'(x),在【0,a】连续,所以根据罗尔定理,存在一点t属于(0,a),使f(t)+tf'(t)=0.罗尔定理:设函