z=x² 4绕z轴旋转而成的曲面图形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:41:02
利用(x-1)/2=y=z+1解得x=2z+3,y=z+1所以绕z轴旋转的曲面为x^2+y^2=(2z+3)^2+(z+1)^2
旋转曲面方程为:x²+y²=2z,与平面z=4交线为:x²+y²=8∫∫∫(x²+y²)dv=∫∫∫r²*rdzdrdθ=∫[0→
旋转后的方程:x^2+y^2=2z和z=4向xoy平面投影原式=∫∫dxdy∫4(下标)(x^2+y^2)/2(上标)(x^2+y^2+z)dz下面就是计算了
设A(x1,y1,z1)为x/2=y=-(z-1)上的任意点,其关于x轴的对称点为A'(x,y,z).易知:x=x1,y1=(x1)/2,z1=1-(x1)/2,y+z=y1+z1→2(y+z)=x-
过原点的对顶锥面,z为中心轴.xy平面投影边界是x/3=±y/2;再问:不好意思哈,没懂,能再详细点吗?再答:题给直线经过原点,因为是绕Z轴旋转,所以用平行于Z轴的平面“Z=常数”去截该旋转曲面,所得
联立方程x^2-2y^2+z=2与z=0,可解得xoy面上曲线方程x^2-2y^2=2.接着令x=(+或-)(x^2+z^2)^(1/2),然后解得方程x^2+z^2-2y^2=2
先求旋转曲面的方程设旋转曲面上一点是(x0,y0),yoz面上的曲线为y^2=2z,则√(x0^2+y0^2)=y得旋转曲面的方程为:z=(x^2+y^2)/2z=(x^2+y^2)/2=5得Dxy:
X^2+Y^2=1是一个在xy平面上的一个圆,直径D=1现在这个圆绕X轴旋转一周(你可以这样想一下,一个放大镜,你握着把,旋转一圈,那个放大镜的路径就成了一个球)就是一个球
用柱坐标解.x=r·cosθ;y=r·sinθ;则被积函数X^2+Y^2=r^2;=∫(从2到8)dz∫(从0到2π)dθ∫(从0到√(2Z))r·r^2dr=2π/4∫(从2到8)dz·r^4|(从
把z^2换成z^2十y^2即可
z^3=5*√(x^2+y^2)再问:为什么不是z^6=25*(x^2+y^2)再答:其实看你怎么理解,这个图像是八个卦限都有的如果两边平方,开根号时加±即可再问:那答案究竟是z^3=5*√(x^2+
x^2-y^2+z^2=1设点M(a,b,c)在直线L上,点N为点M绕Z轴旋转所得的点,设N(x,y,z),则有z=c,x^2+y^2=a^2+b^2,于是有:总之消去a,b,c;就可以得到了
1.z=x^2+y^22.f(x,y)=[(2/x)^2-4(1/y)^2]*xy/83.f'x(x0,y0)=0且f'y(x0,y0)=0一、假设为X+kY+mZ=n,则有-3+2k+7m=n;2+
设旋转面上任意一点为p(x,y,z),它是由直线上的点p0(2y,y,1/2(y+1))旋转过来的.p到y轴的距离,应与p0到y轴的距离相等.即x^2+z^2=(2y)^2+[1/2(y+1)]^2,
您够可以的了,哈哈哈,比这个好积的想来不多了
1.椭球面.关于原点中心对称.系旋转曲面.由YOZ坐标平面的椭圆(y^2)/9+(z^2)/4=1绕Y轴旋转180度形成;或者由XOY坐标平面的椭圆(x^2)/4+(y^2)/9=1绕Y轴旋转180度
x²+y²=1柱面.