z=xy x² y²在x=0,y=0时z=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 20:14:00
(x+y-z)/z=(y+z-x)/x=(z+x-y)/y[x+y]/z-1=[y+z]/x-1=[z+x]/y-1[x+y]/z=[y+z]/x=[z+x]/y设[x+y]/z=[y+z]/x=[z
[x+(z-y)][x-(z-y)]=x-(z-y)记得采纳啊
设(y+z)/x=(x+z)/y=(x+y)/z=k;y+z=kx;x+z=ky;y+z=kx;2(x+y+z)=k(x+y+z);k=2或x+y+z=0;所以,(y+z)(x+z)(x+y)/xyz
x/(y+z)=y/(x+z)=z/(x+y)当x+y+z=0时,x+y=-z(x+y)/z=-z/z=-1当x+y+z≠0时,由x/(y+z)=y/(x+z)=z/(x+y)根据等比性质可得(x+y
x+y-z=6y+z-x=2z+x-y=0三式相加得x+y+z=8-得2z=2z=1-得2x=6x=3-得2y=8y=4x=3y=4z=1
设(y+z)/x=(z+x)/y=(y+x)/z=k则y+z=kx,z+x=ky,y+x=kz三式相加2(x+y+z)=k(x+y+z)故当x+y+z=0时,k=-1,但xy-z不等于0,可知x+y+
令(y+z)/x=(z+x)/y=(x+y)/z=t∴y+z=xt,z+x=yt,x+y=zt三式相加得:2(x+y+z)=(x+y+z)t∴(2-t)(x+y+z)=0∴2-t=0或x+y+z=0若
∵y+z÷x=Z+X÷y=X+Y÷z容易发现x,y,z位置互换也成立∴式子与x,y,z值无关∴x=y=z∴(X+Y-Z)÷(X+Y+z)=x/3x=1/3明教为您解答,请点击[满意答案];如若您有不满
x+y+z-6=02x+3y-z-12=02x-y-z=0组成方程组再解x=2y=3z=1
X/(Y-Z)=-Y/(Z-X)-Z/(X-Y)所以X/(Y-Z)^2=-Y/(Z-X)(Y-Z)-Z/(X-Y)(Y-Z)=[-Y(X-Y)-Z(Z-X)]/(X-Y)(Y-Z)(Z-X)=(Y+Z
令(y+z)/x=(z+x)/y=(x+y)/z=ky+z=kxx+z=kyx+y=kz2(x+y+z)=k(x+y+z)2(x+y+z)=k(x+y+z)(2-k)(x+y+z)=0(x+y+z≠0
figureezmesh('x*y')holdonezmesh('1-x-y')holdoff再问:不是很清楚。这个间距太大了,,可不可以精度大一些。。
∵xyx+y=-2,yzy+z=43,zxz+x=-43,∴1x+1y=-12,1y+1z=34,1z+1x=-34,∴2(1x+1y+1z)=-12,即1x+1y+1z=-14,则xyzxy+yz+
证明函数f(x,y)=(x+y)/(x-y)在点(0,0)处的二重极限不存在.当点(x,y)沿着直线y=kx(k为不等于1的任意实数)趋于(0,0)时,limf(x,y)=lim(x+kx)/(x-k
设x+y-z/z=x-y+z/y=y+z-x/x=k有x+y-z=kzx-y+z=kyy+z-x=kx三式相加得x+y+z=k(x+y+z)k=1得x+y=(k+1)zx+z=(k+1)yy+z=(k
将(x+y+z)²展开有(x+y+z)²=x²+y²+z²+2xy+2xz+2yz=x²+y²+z²所以2xy+2xz+
X+Y+Z
f=x+1f+u=2x+3f+u+c=3x+8f+u+c+k=4x+15f(f,u,c,k)=(x+1)(2x+3)(3x+8)(4x+15)
x+3y+10z=0就是x+3y=-10z即2x+6y=-20zA式2x-y-2z=0就是2x-y=2zB式A式-B式得到:(2x+6y)-(2x-y)=-20z-2z即7y=-22z解出y=-22z