Z=ln(cos(x y)∧siny)则
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:01:33
我来试试吧...z=e^xy*cos(x+y)Z'x=ye^xycos(x+y)-e^xysin(x+y)Z'y=xe^xycos(x+y)-e^xysin(x+y)故dZ=[ye^xycos(x+y
(1)在(x,y)=(0,0)(2)在x=0或y=0在上面没定义
可以先在二维坐标中作xy=1的图像,也就是y=1/x.这个图像很容易的,就是在一三象限的反弧线,作好后再扩展到三维坐标系中,就是把线扩展成面,就是两个反弧面.图形就是两个关于Z轴对称的弧面,沿Z轴看就
z'x=(-y/x^2)/(y/x)=-1/xz'y=(1/x)/(y/x)=1/ydz=z'xdx+z'ydyu=ln(x^2+y^2+z^2)u'x=2x/(x^2+y^2+z^2)u'y=2y/
题目不清楚,有两个变量,是求偏导还是全微分表达式?求偏导的话,将其中一个变量看做常数,按一元函数的方法求
δz/δx=1/(xy+x/y)*(y+1/y)=(y²+1)/(xy²+x)=1/xδ^2z/δxδy=δ(δz/δx)/δy=0
dz=d(xyln(xy))=xyd(ln(xy))+ln(xy)d(xy)=xyd(xy)/(xy)+ln(xy)d(xy)=d(xy)+ln(xy)d(xy)=(1+ln(xy))d(xy)=(1
∂Z/∂x=y*cos(xy)-2cos(xy)*sin(xy)*y=y*cos(xy)-y*sin(2xy)∂Z/∂y=x*cos(xy)-2cos(
e^(lnx+lny)=e^lnx*e^lny=x*ye^lnxy=xy所以e^(lnx+lny)=e^lnxy所以lnx+lny=lnxy
Zx=ycos(xy)-2ycos(xy)sin(xy)=ycos(xy)-ysin(2xy)Zy=xcos(xy)-xsin(2xy)
令x=根号2分之1(x‘-y’)y=根号2分之1(x'+y')z=xy=1/2(x'^2-y'^2)双曲抛物面
z=xy的图形,应该是一种马鞍面.再问:嗯,能说的具体点吗再答:一种马鞍面
所以Z=[Ln(2±√3)i]/i=π/2+iln(2±√3)正弦函数的值应该exp(iz)=cos(z)+isin(z)sin(z)=(exp(iz)-exp(-iz))/2i=2
u=ln(xy+z)du=d[ln(xy+z)]/dx*dx+d[ln(xy+z)]/dy*dy+d[ln(xy+z)]/dz*dz=y/(xy+z)*dx+x/(xy+z)*dy+1/(xy+z)*
z=(x^2)*ln(2xy),Zx=(2x)ln(2xy)+(x^2)/2xy*(2xy)'=(2x)ln(2xy)+xZxx=2ln(2xy)+(2x)/2xy*(2xy)'+1=2ln(2xy)
z=lnx^z+lny^x=zlnx+xlnyz=xlny/(1-lnx)先关于x求偏导,把y看做常数,再对y求偏导,把x看做常数dz=0dx+x/y(1-lnx)dy(此处省略了一些计算过程,)dz
dy/dx=dy/du*du/dx+dy/dv*dv/dx=v*e^(x+y)+u*y/x=ln(xy)*e^(x+y)+e^(x+y)*y/x=e^(x+y)[ln(xy)+y/x]所以dy=e^(
说明:eu应该是e的x次幂,dz/dx,dz/dy应该是偏导数.∵v=xy,u=x2-y2∴du/dx=2x,du/dy=-2y,dv/dx=y,dv/dy=x∵z=ln(e^u+v),∴dz/dx=