z=f(u,x,y),其中u=xe^y

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:26:18
z=f(u,x,y),其中u=xe^y
设Z=y/f(x^2-y^2),其中f(u)为可导函数,验证1/X乘δz/δx + 1/y乘δz/δy =z/y^2

这是复合函数的导函数的利用δz/δx=2xyf'/f²δz/δy=[f+yf'(-2y)]/f²=(f-2y²f')/f²1/x×δz/δx+1/y×δz/δy

设x-az=f(y-bz),其中函数f(u)可微,验证:a(δz/δx)+b(δz/δy)=1

两边对x求导1-a*δz/δx=f'(y-bz)*(-bδz/δx)整理得:[a-bf'(y-bz)]δz/δx=-1两边对y求导-a*δz/δy=f'(y-bz)*(1-bδz/δy)整理得:[-a

z=f(x/y,y/x),其中f(u,v)关于u,v具有连续偏导数,求 偏导 z/x 偏导 z/y?

令u=x/y,v=y/x,偏导z/x=fu(u,v)du/dx+fv(u,v)dv/dx=fu(u,v)1/y-fv(u,v)y/x^2偏导z/y=fu(u,v)du/dy+fv(u,v)dv/dy=

高数偏导 急用~谢谢Φ(x,y,z)=F(x-z,y-z),其中u=x-z,v=y-z.求Φ'x 和 Φ'z求Φ 'x

高数课本上那个问题不比这个难?你看看教材先吧,再说百度上打数学符号太难啦.

设z = f(u,v),而u=x+y,v=xy,其中f具有一阶连续偏导数,则∂z/∂x

∂z/∂x=(∂f(u,v)/∂u)*(∂u/∂x)+(∂f(u,v)/∂v)*(∂v/&#

设函数z=z(x,y)是由方程F(x-z,y-z)所确定的隐函数,其中F(u,v)具有一阶连续偏导数,求z(下标x)+z

z(x)+z(y)=-(f(x)+f(y))/f(z)f(x)=f1(1-z(x)-f2z(x))f(y)=-f1z(y)+f2(1-z(y))f(z)=-f1-f2所以z(x)+z(y)=1+z(x

高数 设函数u=f(x,y,z),其中z=ln√(x^2+y^2),求(αu/αx)和(αu/αy)

这是求偏导数.偏u/偏x=fx'dx+fz'*偏z/偏x=fx'dx+fz'*x/[(x^2+y^2)^0.5],偏u/偏y=fy'dy+fz'*偏z/偏y=fy'dy+fz'*y/[(x^2+y^2

大一高数f(x-z,y-z)=0,其中f(u,v)可微,则δz/δx+δz/δy是多少?

记F(x,y,z)=f(u,v)=0u=x-z,v=y-zδz/δx=-(δF/δx)/(δF/δz)=(δf/δu)/(δF/δu+δF/δv)δz/δy=-(δF/δy)/(δF/δz)=(δf/

多元复合函数求导题目z=y/f(x^2-y^2),其中f(u)为可导函数,验证(1/x)*(ðz/ðx)

z=y/f(x^2-y^2)ðz/ðx=y(-2xf'/f^2)ðz/ðy=1/f+y(2yf'/f^2)(1/x)*(ðz/ðx)=-2yf'/f^2

多元函数微分学 F(x,y,z,u)=xyz+u(x+y+z-a)

第一题是用的拉格朗日数乘法计算条件极值.即在条件a=x+y+z下的乘积xyz的极值.设参数为u,构造拉格朗日函数F(x,y,z,u)=xyz+u(x+y+z-a)分别对四元函数求偏导,使其为零,联立方

u=cos(2x+y+z),其中z=f(x,y)由方程y*x^2-x^2*z-x=0确定,求:u对x求偏导(x=1,u=

δu/δx=-sin(2x+y+z)(2+δz/δx)δz/δx=-(2xy-2xz-1)/(-x²)=(2y-2z-1)/x将已知值代进去即可得偏导再问:为什么δu/δx=-sin(2x+

己知z=f(u),u=ψ(u)+∫(y,x) p(t)dt,其中f(u)可微,p(t),ψ(u)连续,且ψ'(u)≠1,

u=ψ(u)+∫(y,x)p(t)dt两边全微分du=ψ'(u)du+p(x)dx-p(y)dy整理du={p(x)/[1-ψ'(u)]}dx-{p(y)/[1-ψ'(u)]}dy得到du/dx=p(

u=f(x-y,y-z,t-z)

分别把x,y,z,t当做为之数,其余都是常数,求就行了再问:具体怎么做呢?麻烦写清楚些

设z=f(u),方程u=g(u)+∫ (上限x.下限y)p(t)dt确定u是x,y的函数,其中f(u),g(u)可微,p

想办法变换就行了,EASY再问:能详解一下吗?再答:上网没带笔,用画图工具算。如图,第一行是已知条件。第二行同时取负号,积分上下限交换第三行同时对上面式子求相应导数,注意与求解结果一致第四行继续对原来

设z=xyf(x+y),其中f(u)二阶可导,求Φz/Φx,Φz/Φy(偏导)

本题的解答,需要说明一下:1、因为函数f是x+y的函数,也就是复合关系:   f是u 的函数,而u=x+y;2、无论是对x求导,还是对y求导,都得先对u&nbs

设函数z=f(u) u=x^2+y^2 且f(u)二阶可导 则∂^2*z/∂x^2=?

由链式法则知道:再问:就你懂我是什么意思了!!激动地哭死!!但是答案错了。。答案4xyf“(u)再答:怎么求偏导都不会有xy这一项,因为(x^2+y^2)对x求偏导,y就消失了,除非你求混合导就是这个