z=2x-y的概率密度 p{x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:23:27
题目条件没有写完整,只说明了f(x,y)在第一象限的取值,在其它象限呢?一般情况都设定在其它象限为0,即{exp(-(x+y)),当x>0,y>0时,f(x,y)={{0,其它.(这样才能保证总概率为
一定要用卷积公式嘛?您好,liamqy为您答疑解惑!如果有什么不明白可以追问,如果满意记得采纳!如果有其他问题请采纳本题后另发点击向我求助,答题不易,请谅解,谢谢再问:嗯,是卷积公式的题目,我对卷积公
思路:1.求概率密度的问题,首先要想到要通过求分布函数来解.2.分布函数F(z)=P(Z
F(z)=P{Z0所以f(z)=F'(z)=2e^(-2z),z>00,其他再问:第四步中,y的积分范围应该是0~2z吧,这道题不能用卷积运算吗再答:对,是,晕了,呵呵。F(z)=P{Z2z-y)e^
不一定,因为x并不一定要在y发生的条件下才发生.P(x|z)>=P(x|y)*P(y|z)
首先,设c为常数,则E(c)=c,D(c)=0.然后要知道X~N(-3,1)的意思是X服从期望为-3,方差为1的正态分布,即E(X)=-3,D(X)=1.同理,E(Y)=2,D(Y)=4.所以:E(Z
我算出来得-2e^(-4z)+2e^(-2z)是算的x+y≤2z下f(x,y)的积分然后微分的出来的,不知道有没有算错.可以讨论下~
如果是求P{Z>=z}=P{X+Y>=z},则在上方,反之在下方.
4zexp(-2z),z>0
卷积公式是适用于Z=X+Y的情况,不能随便套用在其他情况下
f(x,y)=(1/2)(x+y)e∧-(x+y),不可以表示成x和y的函数的乘积形式,所以,X、Y不是独立的.Z=X+Y的概率密度.Z的cdfF(z)=P(Z
Z=min(x,y)表示:Z为x、y中较小的概率设A={x=k,y
题目就是这样?你是要求方法还是?再问:方法,谢谢再答:这个简单的。。就是得画图。。。。
直接看图.再答:再答:
先将Z对x求偏导,再对y求偏导,就得到Z的密度曲线即:二维随机变量分布函数的二阶混合偏导就是密度函数
由f(x,y),得知:(X,Y)是二维正态分布,X与Y独立,X与Y的均值都是0,方差分别为(σ1)^2和(σ2)^2所以:Z=X-Y也是正态分布,均值为0,方差为:(σ1)^2+(σ2)^2你就按照一
你的1/18是怎么来的?明明fx(x)=1/2而已,Y应该也是啊,Jacobbi行列式为1,所以fY(y)=1/2变范围(-1再问:大概可能是这样再答:1-3X?那你题目给错了,你求导求错了fY(y)
你用他们两个的范围表示出x和z的关系,也就是说在以z为横轴,x为纵轴的坐标系中画出区域,最后对x求积分就可以利用∫f(x,z-x)dx,上下线是x的范围,使用z表示的,这样求出来的就是结果,但要注意z