z=(1 xy)^y 对y的偏导数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 12:50:54
两边取对数:lnz=y*ln(1+xy)对y求导:z'/z=ln(1+xy)+yx/(1+xy)所以:z'=z*[ln(1+xy)+xy/(1+xy)]=(1+xy)^y[ln(1+xy)+xy/(1
G[x+z*y^(-1),y+z*x^(-1)]=0证明x*∂z/∂x+y*∂z/∂y=z-xy?Gz=(1/y)G1+(1/x)G2=LGx=G1-(
对x求导,把y看成常数:y(1+xy)^(y-1).y对y求导,把x看成常数,用等式两边取自然对数的方法,或者用y=e^lnx的等价变形进行求导:(1+xy)^y.(ln(1+xy)+(y.x)/(1
z=xy+x/y对x的偏导数=y+1/y对y的偏导数=x-x/y^2
把1+xy看成U,把y看成V ,原式U^V 的形式,解法如下:有的书上把对Y的偏倒给整理了一下,我这个是直接出来的,答案没问题!编辑了半天,采纳一下吧,嘿嘿
z=(1+xy)^y=e^[(ln(1+xy))*y]取对数:lnz=y*ln(1+xy)求全微分:dz/z=(1/(1+xy))y*ydx+ln(1+xy)dy+(xy/(1+xy))dy=(1/(
不需要图,很简单的z=xy+u两边对x求导:∂z/∂x=y+∂u/∂x,两边对y求导:∂²z/(∂x∂y)
lnz=yln(1+xy)z=e^{yln(1+xy)}dz/dy=e^[yln(1+xy)]{ln(1+xy)+xy/(1+xy)}dz/dx=e^[yln(1+xy)]{y^2/(1+xy)}
1.z'x=3x²y²z'y=2x³y2.z'x=4x³z'y=3y³3.z'x=ye^(xy)+2xyz'y=xe^(xy)+x²4.u'
确定z=(1+xy)^(x+y)!后面有个阶乘符号吗?阶乘不是连续函数,是不可导的如果忽略阶乘符号z=(1+xy)^(x+y)lnz=(x+y)*ln|1+xy|(∂z/∂x)
z=(x^2)*ln(2xy),Zx=(2x)ln(2xy)+(x^2)/2xy*(2xy)'=(2x)ln(2xy)+xZxx=2ln(2xy)+(2x)/2xy*(2xy)'+1=2ln(2xy)
1、z=xe^(-xy)dz/dx=e^(-xy)-xye^(-xy)dz/dy=-x^2*e^(-xy)2、f(x,y)=(1+xy)^y令u=1+xy,v=y,则f=u^v由复合函数求导法则df/
z=xy+lnxy=xy+lnx+lny所以zy=x+1/y对的.
很简单,当未知数在指数位置时用a^x=Ina*a^x但当未知数在指数和底数位置时,不能用a^x=Ina*a^x所以你一开始就错了z=(1+xy)^ylnz=yln(1+xy)(1/z)(dz/dy)=
z=y/f(x²+y²),令u=x²+y²∂z/∂x=y·-1·[∂f(u)/∂u·∂(x²
对x偏导数=3x^2-3y对y偏导数=3y^2-3x