z =f x 2,xy, 求偏导

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:13:01
z =f x 2,xy, 求偏导
1.x-z/xy - 2ab/xy

1=(x-z-2ab)/xy2=(a²-2ab+b²)/a-b=(a-b)²/a-b=a-

xy/x+y=1,yz/y+z=2,xz/x+z=3求x,y

xy/(x+y)=1,取倒数(x+y)/xy=1x/xy+y/xy=11/y+1/x=1.1yz/(y+z)=2,取倒数(y+z)/yz=1/2y/yz+z/yz=1/21/z+1/y=1/2.2xz

x²+y²+z²=xy+yz+xz 等于什么 也就是化简后为什么

x²+y²+z²=xy+yz+xz两边各乘以2得到2x²+2y²+2z²=2xy+2yz+2xzx²-2xy+y²+x&

z=xy是什么曲面

可以先在二维坐标中作xy=1的图像,也就是y=1/x.这个图像很容易的,就是在一三象限的反弧线,作好后再扩展到三维坐标系中,就是把线扩展成面,就是两个反弧面.图形就是两个关于Z轴对称的弧面,沿Z轴看就

已知X平方+Y平方+Z平方=XY+YZ+XZ,请你说明X=Y=Z

X^2+Y^2+Z^2=XY+YZ+XZ则有2X^2+2Y^2+2Z^2-2XY-2YZ-2XZ=0==>(X-Y)^2+(Y-Z)^2+(Z-X)^2=0必然X-Y=0,Y-Z=0,Z-X=0==>

解方程组.xy=32yz=54x+y+z=66

x:y=3:2①y:z=5:4②x+y+z=66③,由①得x=32y④,由②得z=45y⑤,把④⑤代入③得32y+y+45y=66,解得y=20,把y=20代入④得x=32×20=30,把y=20代入

定义集合运算:A×B={Z/Z=XY,X∈A,Y∈B,}设A={1

A*B的元素有1*0=01*2=22*0=02*2=4即有3个元素:0,2,4则所有元素之和为6

x/(xy+x+1)+y/(yz+y+1)+z/(xz+z+1)=?其中 xyz=1

结果等于:1原式=x/(xy+x+xyz)+y/(yz+y+xyz)+z/(xz+z+xyz)=1/(y+1+yz)+1/(z+1+xz)+1/(x+1+xy)=xyz/(y+xyz+yz)+1/(z

z= xy ln(xy) 求全微分dz

dz=d(xyln(xy))=xyd(ln(xy))+ln(xy)d(xy)=xyd(xy)/(xy)+ln(xy)d(xy)=d(xy)+ln(xy)d(xy)=(1+ln(xy))d(xy)=(1

z=(1+y)^xy 求偏导的问题 高数

这个就是把x看做参数为了好看你就写成a啊,z是y的表达式,然后z对y求导数z=e^{ayln(1+y)},这个对y求导没问题吧额题目是(1+xy)^y吧,你打错了?方法同上不改了再问:这样不就成(1+

z=sin(xy)+cos^2(xy)一阶偏导数

∂Z/∂x=y*cos(xy)-2cos(xy)*sin(xy)*y=y*cos(xy)-y*sin(2xy)∂Z/∂y=x*cos(xy)-2cos(

简单的复变函数题设f(z)={ xy/(x*x+y*y),z不等于0:0,z等于0;证明;f(z)在z=0处不连续.

当点(x,y)沿x轴和y轴趋于(0,0)时,f(z)的极限都是0.但它沿直线y=mx趋于(0,0)时,limf(x,y)=lim(mx*x/(x*x+m*m*x*x))=m/(1+m*m),对于不同的

若xy+z

x+y+z=0时,y+z=-x,∴k=x−x=-1,x+y+z≠0时,k=xy+z=yz+x=zy+x=x+y+z2(x+y+z)=12,综上所述k=12或-1.故答案为:12或-1.

求方程组x+y=2xy−z

将x+y=2两边分别平方,得x2+2xy+y2=4(1)把方程xy-z2=1两边都乘以2得2xy-2z2=2(2)(1)-(2)得:x2+y2+2z2=2(3)由x+y=2得2x+2y=4(4)(3)

z=xy图像是什么

令x=根号2分之1(x‘-y’)y=根号2分之1(x'+y')z=xy=1/2(x'^2-y'^2)双曲抛物面

x/3=y/2=z/5,求xy+yz+xz/x²+y²+z²

令x/3=y/2=z/5=k则x=3ky=2kz=5k∴(xy+yz+zx)/(x²+y²+z²)=(6+10+15)k²/(9+4+25)l²=31

xy=z是什么图形

z=xy的图形,应该是一种马鞍面.再问:嗯,能说的具体点吗再答:一种马鞍面

(1/x+1/y+1/z)×(xy)/(xy+yz+zx)

通分原式=[(yz+xz+xy)/xyz]×(xy)/(xy+yz+zx)=xy(yz+xz+xy)/[xyz(xy+yz+zx)]=1/z

z=(1+xy)^y对y求偏导

很简单,当未知数在指数位置时用a^x=Ina*a^x但当未知数在指数和底数位置时,不能用a^x=Ina*a^x所以你一开始就错了z=(1+xy)^ylnz=yln(1+xy)(1/z)(dz/dy)=

高等数学求偏导:z=(1+xy)²

这道题还是很普通的对x求偏导时应该把y当做常数来对待这样的话里相当于只有对x的函数求导,同理可求y的求导,z=(1+xy)^2z'=2(1+xy)*(1+xy)'=2(1+xy)*(x'y+xy')d