y=1-x²/1 x²
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:38:22
解题思路:用x2的取值范围、二次函数的的性质、均值不等式,换元法求函数的值域解题过程:
原式=1/2x-[1/(x+y)][(x+y)/2x-(x+y)]=1/2x-[1/(x+y)](x+y)(1/2x-1)=1/2x-(1/2x-1)=1/2x-1/2x+1=1
xyx+yyx+yxx+yxyc1+c2+c32(x+y)yx+y2(x+y)x+yx2(x+y)xyr3-r2,r2-r12(x+y)yx+y0x-y0-yy-x--此时用对角线法则得=2(x+y)
原式=x^2-xy-2xy-2y^2=2x^2-3xy-2y^22、是的,你算错了,以后要细心!原式=(a^2+4ab+4b^2)(2a+b^2)=2a^3+a^2b^2+8a^2b+4ab^3+8a
这样算,分离变量:x²+x=(x+1)²-(x+1)然后,除下来,就等于x+1-1=x注意,x≠-1!
1)x(x-y)(x+y)-x(x+y)^2=x((x-y)(x+y)-(x+y)^2)=x(x^2-y^2-x^2-2xy-y^2)=x(-2xy-2y^2)=-2xy(x+y)2)(2a+b)(2
【(X²+Y²)-(X-Y)²+2Y(X-Y)】/4Y=1,【2xy+2Y(X-Y)】/4Y=14x-2y=42x-y=24X/(4X²-Y²)-1/
y=1+x23−x2则y(3-x2)=1+x2∴x2=3y−1y+1≥0解得y∈(−∞,−1)∪[13,+∞)故答案为:(−∞,−1)∪[13,+∞)
11/x+y2-1
[(-x-y)(-x+y)-(x+y)^2-x(y-y^2)}÷1/2y=[x²-y²-x²-2xy-y²-xy+xy²]/(y/2)=[(x-2)y
1)4xy2)-1/5y^23)2ab^2c4)(2a+b)^25)2yz+xz6)-3a-57)4xy
当x>0时y=x+1x≥2x•1x=2,当且仅当x=1取等号,当x<0时y=-(-x-1x)≤-2(−x)•1(−x)=-2,当且仅当x=1取等号,∴函数y=x+1x的值域为(-∞,-2]∪[2,+∞
1)(2x+5y)(2x-5y)(-4x^2-25y^2)=-(4x^2-25y^2)(4x^2+25y^2)=-(16x^4-625y^4)=625y^4-16x^42)[(x+y)(x-y)-(x
解题思路::∵x+y=0,x+13y=1,解得x=1/12,y=-1/12∴x²+12xy+13y²=1/144-1/12+13/144=14/144-1/12=2/144=1/72解题过程:已知x+
(1)x^2/x)-y-x-y=x-y-x-y=-2y(2)(a/a-b)-(a/a+b)-(2b^2/a^2-b^2)=a(a+b-a+b)/(a^2-b^2)-(2b^2/a^2-b^2)=2b/
解(x-y)(x+y)-(x-2y)²+x(3x-5y)-(x-y)(x-2y)=(x²-y²)-(x²-4xy+4y²)+(3x²-5xy
∵x−x+1=y+3−y,∴x+y=x+1+y+3≤2x+y+42则(x+y)2≤2(x+y+4)解得:-2≤x+y≤4∴x+y的最大值为4故答案为:4
函数f(x)=x+1x在区间(0,1)上单调递减,在区间(1,+∞)上单调递增∴函数f(x)最大值在端点取得,最小值在x=1处取得又∵f(2)=52,f(12)=52,f(1)=2∴函数f(x)=x+
x(x+y)(x-y)-x(x+y)2=x(x+y)[(x-y)-(x+y)]=-2xy(x+y).当x+y=1,xy=-12时,原式=-2×(-12)×1=1.
(x-y)(x+y)=x²-y²(x+3)²=x²+6x+9(x-1)(x-2)=x²-3x+2√25=5