y等于log1 2的x 1次方函数图像
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 22:24:05
见附图:
log12(3)=lg(3)/(lg12)=lg(3)/(lg(3)+lg(4))=1/(1+lg(4)/lg(3))=1/(1+2log3(2))
y²=e^(x+y)两边对x求导2yy'=e^(x+y)*(1+y')2yy'-e^(x+y)*y'=e^(x+y)y'=e^(x+y)/(2y-e^(x+y))y'=y²/(2y
要使函数有意义:log12(x2-1)≥0,即:log12(x2-1)≥log121可得 0<x2-1≤1解得:x∈[-2,-1)∪(1,2]故答案为:[-2,-1)∪(1,2]
令t=x2-1>0,求得x>1,或x<-1,故函数的定义域为{x|x>1,或x<-1},且y=log12t,故本题即求函数t在定义域内的减区间.再利用二次函数的性质可得函数t在定义域内的减区间为(-∞
由x2-3x+2>0得x<1或x>2,当x∈(-∞,1)时,f(x)=x2-3x+2单调递减,而0<12<1,由复合函数单调性可知y=log0.5(x2-3x+2)在(-∞,1)上是单调递增的,在(2
两个根的和=-b/a,乘积为c/a
∵3x-a>0,∴x>a3.∴函数y=log12(3x-a)的定义域为(a3,+∞),∴a3=23,解得a=2故答案为:2.
y=x^x两边取对数,得到lny=x*lnx然后两边对x求导得到1/y*y'=lnx+1/x*x所以有y'=ylnx+y
由-x2+6x-8>0,得2<x<4,设函数y=log12(−x2+6x−8)=log12t,t=-x2+6x-8,则抛物线t=-x2+6x-8的对称轴方程是t=3.∴在抛物线t=-x2+6x-8上,
y=2^|x|所以y=2^(-x)(x<0)=2^x(x≥0)因为值域是[1,2]那么[a,b]的长度最大时是[-1,1],此时长度是2长度最小时是[-1,0]或[0,1],此时长度是1所以区间[a,
幂函数图象.第一象限的图象,当N>0时,增函数,上升当N
y=e^(x+1);y^n=e^n(x+1)(x→1)lim(x^3-2x+1)/(X^2-1)=1∫(1+xe^5x)/xdx=∫1/xdx+∫e^(5x)dx=lnx+(1/5)e^5x+C
令t=x2-5x+6=(x-2)(x-3)>0,可得x<2,或x>3,故函数y=log12(x2-5x+6)的定义域为(-∞,2)∪(3,+∞).本题即求函数t在定义域(-∞,2)∪(3,+∞)上的增
x的x次方乘以(1+lnx)
这个有以下三种结果:此函数在其取值区间是个递增函数.1、如果x取值趋近于0,则极限是0;2、如果x取值趋近于+∞,则极限是无穷大,即没有极限;3、如果指定取值区间,如(a,b)并指定趋近方向是b方向,
∵t=x2-6x+17=(x-3)2+8≥8∴内层函数的值域变[8,+∞) y=log12t在[8,+∞)是减函数, 故y≤log128=-3∴函数y=log12(x2
令u=|x-3|,则在(-∞,3)上u为x的减函数,在(3,+∞)上u为x的增函数.又∵0<12<1,y=log12u是减函数∴在区间(3,+∞)上,y为x的减函数.故答案为:(3,+∞)
∵函数y=log12(x2-3x+2),∴x2-3x+2>0,解得x<1,或x>2.∵抛物线t=x2-3x+2开口向上,对称轴方程为x=32,∴由复合函数的单调性的性质,知:函数y=log12(x2-