y的二阶 y的一阶 2y=x^2-3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 17:06:04
y的二阶 y的一阶 2y=x^2-3
一阶线性微分方程的通解公式 (x-2)*dy/dx=y+2*(x-2)^3,求y的通解

(x-2)dy-ydx=(x-2)dy-yd(x-2)联想一下,对于一个除式做微分的时候,d(f(x)/g(x))=(gdf-fdg)/(g^2)这里的形式是类似的,因此凑这样一个形式:[(x-2)d

y=f(sin^2(3x))求一阶二阶导数,

解析sin²3x'=2sin3xsin3x'=6sin3xcos3x6sin3xcos3x'=18cos²3x-18sin²3x所以二阶导数18(cos²3x-

关于一阶线形微分方程y`+2y=e^-x的通解 请给出具体步骤,

非齐方程;y`+2y=e^-x的特解为e^-x齐次方程;y`+2y=0的通解为y=ce^-2x原方程y`+2y=e^-x的通解为:y=ce^-2x+e^-x

求参数方程x=e^t,y=ln根号(1+t)确定的函数y=f(x)的一阶导数和二阶导数

x=e^ty=ln√(1+t)dy/dt=1/[2(1+t)]dx/dt=e^t利用参数方程求导的方法dy/dx=(dy/dt)÷(dx/dt)=1/[2e^(t)*(1+t)]d²y/dx

数函数y=(2x-1)(3x+2)的一阶导数、和二阶导数

1、y=6x²+x-2∴y‘=12x+12、y'=(2x-1)’(3x+2)+(2x-1)×(3x+2)'=2(3x+2)+3(2x-1)=12x+1

用积分求参数方程x=t-arctant,y=ln(1+t^2)确定的函数y=y(x)的一阶导数和二阶导数.

dx/dt=1-1/(1+t^2)=t^2/(1+t^2)dy/dt=2t/(1+t^2)dy/dx=(dy/dt)/(dx/dt)=2t/t^2=2/t同理求d^2x/dt^2=2t/(1+t^2)

高数列入函数的图像Y=X^2/X+1要求求:1,一阶导数,二阶,2,渐近线,3,列表,4,不充点,5作图

Y=X-1+1/﹙X+1﹚,Y1=X-1Y2=1/﹙X+1﹚Y=Y1+Y2﹙图形叠加﹚如图.[Y′=1-1/﹙X+1﹚²   驻点﹙-2,-4﹚极大,﹙0,0﹚

y = 根号( 2x+1 / 3x ) 的一阶导数

y=√(2x+1/3x)y'=[(1/2)/√(2x+1/3x)][2(3x)-3(2x+1)/(9x²)]=[(1/2)/√(2x+1/3x)](-3/(9x²)=-1/[6x&

有一函数,y=x的 x分之一次方,求它的一阶与二阶导数

(1)因为y=x^(1/x),两边取对数,得lny=(1/x)*lnx.两边求导,得(y')/y=(-1/x^2)*lnx+(1/x)(1/x)=(1-lnx)/(x^2).所以(y')=y(1-ln

求由下列参数方程所确定的函数y=f(x)的一阶和二阶导数.

解;一阶导数:y‘=dy/dx=(3-3t²)/(2-2t)=3/2(1+t)二阶导数:y‘’=d²y/dx²=[3/2(1+t)]'/(2t-t²)'=3/2

高数二阶导数求下列函数的二阶导数y=ln√[(1-x)/(1+x^2)]在下老求导不出正确答案```痛苦中```一阶在下

y=0.5*[ln(1-x)-ln(1+x^2)]y'=0.5*[1/(x-1)-2x/(x^2+1)]哦,不好意思y''=(x^2-1)/[(x^2+1)^2]-1/[2*(x-1)^2]还用再进一

二阶线性常系数微分方程中的自由项怎么确定 例如y的二阶导+y的一阶导=e^2x

右边实际上是P(x)e^(2x),P是x的多项式,只不过P=1,为0次多项式.特解的形式取决于e的指数2是否是特征方程b^2+b=0的根及其重数,此题中2不是特征根,即重数k=0,故特解设为与P同次的

y'-2y/x=x3(x的三次方) 求解一阶线性微分方程

两边同除以x^2y'/(x^2)-(2/x^3)y=x通分(xy'-2y)/(x^3)=x[y/(x^2)]'=x积分y/(x^2)=(1/2)x^2+Cy=(1/2)x^4+Cx^2再问:请问,最终

F(x,y,一阶微分方程 方面的.

就x,y,y'构成的函数

一阶微分方程y'=e的2x-y次方的通解

x2+1)(y2-1)dx+xydy=0ydy/(y^2-1)=-(x+1/x)dx两边积分(1/2)ln|y^2-1|=-x^2/2-ln|x|+C1ln|y^2-1|=-x^2-2ln|x|+2C

求x=cost*e^t,y=sint*e^t确定的函数y=y(X)的一阶和二阶导数

dy/dt=e^t(cost+sint)dx/dt=e^t(cost-sint)所以dy/dx=(dy/dt)/(dx/dt)=(cost+sint)/(cost-sint)=1/)cos²