y″-2y′-3y=xe
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:16:11
你这个直接求积分吧用分步积分即可y=∫xe^xdx=∫xde^x=x*e^x-∫e^xdx=x*e^x-e^x+C(c为常数)
y=x^3+xe^yd(y)=d(x^3+xe^y)dy=d(x^3)+d(xe^y)dy=3x^2dx+e^ydx+xd(e^y)dy=3x^2dx+e^ydx+xe^ydydy=(3x^2+e^y
∵y''-3y'+2y=0的特征方程是r²-3r+2=0,则r1=1,r2=2∴y''-3y'+2y=0的通解是y=C1e^x+C2e^(2x)(C1,C2是积分常数)设y''-3y'+2y
y''+3y'+2y=3xe^(-x)特征方程r^2+3r+2=0的解为r1=-1,r2=-2因此齐次方程y''+3y'+2y=0的通解为y1=Ae^(-x)+Be^(-2x)用常数变易法求特解,设y
猜特解y'-7y=e^x,y=-6e^xy'-7y=0,y=e^(7x)通解为Ce^(7x)--6e^x猜特解y''+3y'+2y=3xe^x,y=(ax+b)e^x2ae^x+(ax+b)e^x+3
我更正一下楼上的小错误,结果不是那样的,他算对了,但是漏了一个很重要的东西,这是很常见的错误,不要再犯!结果是dy=[e^y/(1-xe^y)]dx
一阶线性方程直接带公式其中微分方程的标准形式是y'+P(x)y=Q(x)
是周期积分,转化为极坐标积分.
你这是一个二阶常微分方程特征方程a^2+3a+2=0解得特征根a=-1a=-2所以齐次方程y"+3y'+2y=0的通解~y=C1*e^(-x)+C2*e^(-2x)C1,C2为任意常数应为-1为特征根
y''+3y'+2y=3xe^(-x)y''+3y'+2y=0特征方程r^2+3r+2=0r1=-1,r2=-2y=C1e^(-x)+C2e^(-2x)设y=C1(x)e^(-x)C1''+3C1'=
这是二阶常系数非齐次线性方程解法是先求出齐次方程的通解,就是C1e^x+C2e^x再求出一特解,齐次方程的通解+特解就是非齐次方程得解求特解的方法就是根据原方程等式右边的式子和齐次方程特征根的情况设定
y=C1e^x+C2e^(2x)+1/2-x(x/2+1)e^x.
y'=-e^y-xe^y*y'(1+xe^y)y'=-e^yy'=-e^y/(1+xe^y)
(1)y'=sinx^2+x*cosx^2*2x=sinx^2+2x^2*cosx^2;(2)y'=3x^2+(e^x+x*e^x)=3x^2+e^x*(1+x).
用Green公式:∫CPdx+Qdy=∫∫D(aQ/ax--aP/ay)dxdy=∫∫D(y^3+e^y--x^3--e^y)dxdy=∫∫D(y^3--x^3)dxdy对称性积分区域D关于x,y轴都
典型的二阶常系数线性微分方程,利用特征方程进行求解.解特征方程:λ^2-2λ-3=0得:λ1=-1、λ2=3.因此方程的通解为:y=C1*e^(-x)+C2*e^(3x)+g(x)其中g(x)为一个特
∵齐次方程y''-2y'-3y=0的特征方程是r^2-2r-3=0,则r1=-1,r2=3∴此齐次方程的通解是y=C1e^(-x)+C2e^(3x)(C1,C2是常数)∵设原方程的解为y=(Ax+B)
2yy'-xy'e^y=e^y2yy'=(xy'+1)e^y(y^2)'=(xe^y)'y^2=xe^y+C
是不是等于1?再问:😓😓😓😰就是不懂啊,不等于再答:请参考,不一定对