y′′ y′ y=0求其通解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:21:42
y′′ y′ y=0求其通解
求方程xy′=yln(y/x)的通解

令y=xu则y'=u+xu'代入原方程:x(u+xu')=xulnuxu'=u(lnu-1)du/[u(lnu-1)]=dx/xd(lnu)/(lnu-1)=dx/x积分:ln|lnu-1|=ln|x

求微分方程2y″+y′-y=2ex的通解.

∵微分方程两边除以2,得同解的微分方程y″+12y′−12y=ex对应的齐次方程为y″+12y′−12y=0∴特征方程为r2+12r−12=0,解得特征根为:r1=−1,r2=12∴齐次方程的通解为:

y′=-x/y 通解

y'=-x/ydy/dx=-x/yydy=-xdxy²/2+C1=-x²/2+C2化简可得:y²+x²+C=0y=√(-x²+C)

微分方程 y”-y=0的通解

特征函数r²-1=0r=1或-1那么y=C1e^x+C2e^(-x)C1C2常数

微分方程y'+y=0的通解

dy/dx=-ydy/y=-dx积分:ln|y|=-x+C1得y=C/e^x

y''''+y''+y=0 通解

其次方程解设为e^(ax)代入有a^4+a^2+1=0=>a^2=e^(j2π/3)或e^(j4π/3)推出次方程的四个解为e^(jπ/3)e^(j2π/3)e^(j4π/3)e^(j5π/3)故原方

y''-y=0的通解是什么?

y''-y=0特征方程是r²-r=0特征根是r=0,r=1故方程的通解是y=C1+C2e^x,C1,C2是任意常数

微分方程y〃-2y′=0的通解为

y``+y`=0dy`/dx=-y`,即dy`/y`=-dx,积分得ln|y`|=-x+C.即|y`|=e^(-x+C.)=(e^C.)e^(-x)令C1=±e^C.,则y`=C1e^(-x),再积分

2y+y=0的通解

等于0(什么叫通解?)

y′ =10^(x+y) 急求这道高数题微分方程的通解.

dy/dx=10^x*10^y10^(-y)dy=10^xdx积分得:-10^(-y)/ln10=10^x/ln10+C1化简得通y=-lg(C-10^x)

求微分方程y″-3y′+2y=2xex的通解.

对应齐次方程y″-3y′+2y=0的特征方程为λ2-3λ+2=0,解得特征根为λ1=1,λ2=2.所以齐次微分方程y″-3y′+2y=0的通解为y1=C1ex+C2e2x.因为非齐次项为f(x)=2x

求微分方程y″-3y′+2y=xex的通解.

微分方程y''-3y'+2y=xex对应的齐次微分方程为y''-3y'+2y=0特征方程为t2-3t+2=0解得t1=1,t2=2故齐次微分方程对应的通解y=C1ex+C2e2x因此,微分方程y''-

y''-y'=2(1-x)求其通解

e^(-x)(y''-y')=2(1-x)e^(-x)(e^(-x)y')'=2e^(-x)-2xe^(-x)两边积分:e^(-x)y'=-2e^(-x)+2xe^(-x)-2∫e^(-x)dx=-2

急!急!两道高数题!xy"+y'^2=y'求其通解;y"=(1+y')^3/2求:当y"|(x=0)=0,y'|(x=0

给你个思路,令u=y'我先回答的~~如有问题请在线交谈~~

拜托诸位,y''+y'-2y=0 求其通解

c1*e^(-2x)+c2*e^xc1c2为任意常数再问:简单的给点过程呗再答:看这个式子提取出x^2+x-2=0,得到一个-2一个1两个解,套用公式就得到了啊

(x+y)dx+xdy=0求其通解

二十年教学经验,专业值得信赖!敬请及时采纳,在右上角点击“评价”,然后就可以选择“满意,问题已经完美解决”了.

微分方程y′=y的通解

dy/dx=y(1/y)dy=dx两边积分后得ln丨y丨=x+cy=±e^(x+c)所以通解为y=ce^x