ytanx=ylny的通解
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:20:58
给方程两边同时乘积分因子e^∫tanxdx可变为(ye^∫tanxdx)'=sin2x*e^∫tanxdx积分得ye^∫tanxdx=∫sin2x*e^∫tanxdx+Cy/cosx=2∫sinxdx
(sinx)dy=(ylny)dx,dy/(ylny)=dx/sinx,∫dy/(ylny)=∫dx/sinx,∫d(lny)/(lny)=∫dx/sinx,ln(lny)=lntan(x/2)+ln
微分方程定义里,dy前面的系数就不等于0的,否则方程里只有dx,没有dy,这还是微分方程吗?
如果有用请及时采纳,
变量分离dy/(ylny)=dxd(lny)/lny=dx(lny)^2/2=x+c
dy/ylny=dx/x两边积分得lnlny=lnx+C1lny=C2e^x再问:后面那题呢?再答:y=x(-1≤x≤1)再问:cosxsinydy=cosysinxdx,Y|(x=0)=45°求初始
xdy=ylnydxdy/ylny=dx/x(dlny)/lny=dlnxd(lnlny)=dlnx所以lnlny=lnx+C令C=0(因为只求他的一个解)所以lnlny=lnx所以x=lny所以y=
∵ylnydx+(x-lny)dy=0∴ylnydx/dy+x=lny.(1)∴原方程与方程(1)同解用常数变易法求解方程(1)∵ylnydx/dy+x=0==>dx/x=-dy/(ylny)==>d
这很简单啊y'sinx=ylnydy/(ylny)=sinxdxd(lny)/lny=sinxdx两边积分得到ln(lny)=-cosx+C,C是任意常数
左边凑微分dy/(ylny)=dlny/lny=lnlny右边换元吧,令t=lnx,x=e^t,dx=e^tdtdx/lnx=e^t/tdt,好象不可积啊
lnc是常数,你写C也是可以的xy'-ylny=0xy'=ylnyy'/ylny=1/x两边积分得ln(lny)=lnx+lnc=lncxlny=cxy=e^cx
可分离变量型,原微分方程可化为dx/(1+x^2)=dy/(ylny),两边同时积分J1/(1+x^2)dx=J1/(lny)d(lny),得lnlny=arctanx+C1得通解lny=Ce^(ar
两边同时对y积分得d(yy')=d(0.5y^2(lny-0.5))y'=0.5ylny-1/4y+c1/y积分得y=1/4y^2lny-1/4y^2+C1lny+C2
(1)dx+xydy=y=y^2dx+ydy==>(xy-y)dy=(y^2-1)dx==>(x-1)ydy=(y^2-1)dx==>ydy/(y^2-1)=dx/(x-1)两边积分,得:ln(y^2
数列1/1*2+1/2*3+…+1/n(n+1)的sn=1-1/2+1/2-1/3+----+1/n-1/(n+1)=1-1/(n+1)1-1/(n+1)中的1-是怎么得出的?1/n-的n取1吗,你不
属于一阶线性微分方程e^(∫-tanxdx)=e^(ln(cosx))=cosx(y*cosx)'=cosx*secx=1ycosx=x+Cy(0)=0C=0y=x/cos
若y=1,则原方程成立.若y≠1,则dy/(ylny)=dx/x^2两边积分:ln|lny|=-1/x+C|lny|=e^(-1/x+C)lny=±e^(-1/x+C)y=e^(±e^(-1/x+C)
xy'-ylny=0∫ylnydy=∫xdx(1/2)∫lnydy^2=(1/2)x^2y^2lny-∫ydy=x^2y^2lny-(1/2)y^2=x^2+C