yoz面上的曲线y^2 z

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:57:37
yoz面上的曲线y^2 z
求曲线z=2-x?-y?,z=(x-1)?+(y-1)?在三个坐标面上投影曲线的方程

两方程联立,消去z,得:(x-1/2)^2+(y-1/2)^2=1/2所以在XOY平面投影方程为:(x-1/2)^2+(y-1/2)^2=1/2同理可得在XOZ和YOZ平面内投影分别是:3z-z^2+

曲线z=3和y方+z方-2x=0在xoy面的投影曲线方程高数

把z=3代入y^2+z^2-2x=0就行了……得到的曲线是:y^2-2x=9这个你自己想象一下就知道了,曲面z=3与曲面y^2+z^2-2x=0相交得到切线,而曲面z=3与xoy面是平行的

怎样用MATLAB画出z关于x的曲线,z=35220*x^2*y,y=[2*log10(63*x*y^0.5)-0.8]

首先由z=35220*x^2*y--------------------(1)整理变形:x*y^0.5=(z/35220)^0.5代入y=[2*log10(63*x*y^0.5)-0.8]^(-2)-

用matlab画出z=(x-2).^2+(y-1.2).^2的网络曲线

ezmesh('(x-2).^2+(y-1.2).^2')再问:可以具体点吗?过程怎么写?再答:就在命令窗口输入直接用ezmesh('(x-2).^2+(y-1.2).^2')即可画图如果你不用这个,

求曲线x+y+z=3 x+2y=1在yOz面上投影方程.具体如图

z=3-x-yx=1-2y求得z=2+yy=z-2回答完毕

求曲线x2+2y2-z=0,z=x+1在y=0坐标面上的投影曲线方程

解x^2+2y^2-z=0,z=x+1,y=0方程组得2点坐标(1/2+√3/2,0,3/2+√3/2),(1/2-√3/2,0,3/2-√3/2)∵平面z=x+1垂直于y=0坐标面,∴曲线x^2+2

求螺旋线x=acost,y=asint.z=bt.在三个坐标面上的投影曲线的指教坐标方程

1在xoy平面,为:x^2+y^2=a^2‘;2在xoz平面为:x=acos(z/b);3在yoz平面为:y=asin(z/b);

高数 求曲线在xoy面上投影的曲线方程 x^2+y^2+z^2=9 x+z=1 为什么我和答案不一样?

你的答案是对的,参考答案是错的.显然该曲线在xoy面上的投影是不过原点的,而参考答案的方程有(0,0)的解,过原点.

高数 求曲线在xoy面上投影的曲线方程 x=cosθ y=sinθ z=2θ 答案我自己可以猜到

θ=z/2.故有x²+y²=cos²(z/2)+sin²(z/2)=1,即表达式为x²+y²=1.

求曲线 {x^2+y^2+z^2=5,z=1在xoy坐标面上的投影曲线方程.速求过程

因为Z=1,所以方程化解为X^2+Y^2=4所以是一个圆,半径为2

求曲线z=2-x^2-y^2;z=(x-1)^2+(y-1)^2分别在三个坐标面上的投影曲线方程

空间曲线在平面投影求空间曲线的射影柱面,设空间曲线方程为   先消元,若求xOy平面的投影就消z如题中①式减②式得  即为相应的空间曲线的射影柱面&n

空间曲线方程组z=x^2+y^2 z=2-(x^2+y^2)在xoy平面上的投影曲线方程是什么,怎么算啊,

在xoy平面上投影是一个圆面,空间图像是两个圆锥侧表面把z用具体值带入,可得到例如z=0时,x、y的图像是一个点,其他值时x、y的图像是半径渐大的圆

怎么求Z=(X+Y)/2的概率密度曲线

先将Z对x求偏导,再对y求偏导,就得到Z的密度曲线即:二维随机变量分布函数的二阶混合偏导就是密度函数

原题:计算三重积分,其中积分区域D是由yoz面上的曲线 y^2=2z 绕z轴旋转而成的曲面与平面z=5所围成的闭区域.

先求旋转曲面的方程设旋转曲面上一点是(x0,y0),yoz面上的曲线为y^2=2z,则√(x0^2+y0^2)=y得旋转曲面的方程为:z=(x^2+y^2)/2z=(x^2+y^2)/2=5得Dxy:

将yoz面上的一双曲线y^2/b^2-z^2/c^2=0绕y轴旋转一周,求所得的旋转曲面方程

绕y轴旋转一周,y不变,另一个变量z^2换成x^2+z^2,即y^2/b^2-(x^2+z^2)/c^2=1为双叶双曲面.

曲面x^2 4y^2 z^2=4与平面x z=a的交线在xoy面上的投影曲线为

1、不会是打错了吧?这个……如果按x^2(4y)^2z^2=4与xz=a相交计算的话,那就是交为y=1/2a和y=-1/2a,此两条直线即为投影线.2、这个……因为我是大学生,所以是用泰勒展开算的;因

三重积分求体积,∫∫∫(y²+z²) dv,积分区域为由xoy面上的曲线y²=2x绕x轴旋

可能是哪里想不通吧~以✔10为上限的是投影法,以✔(2x)为上限的是切片法再问:懂了懂了,一时糊涂了,谢谢你!

设Γ为曲线x=t,y=t^2,z=t^3上相应于t从0变为1的曲线弧.第二类曲线积分∫P(x,y,z)dx+Q(x,y,

T=(x',y',z')=(1,2t,3t^2)所以,三个方向余弦分别为cosα=1/√(1+4t^2+9t^4)cosβ=2t/√(1+4t^2+9t^4)cosγ=3t^2/√(1+4t^2+9t