yln⁡y dx (x-lny)dy=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 07:48:45
yln⁡y dx (x-lny)dy=0
xdy/dx=yln(y/x)的通解齐次方程

令y=xu则y'=u+xu'代入原方程:x(u+xu')=xulnu得xu'=ulnu-udu/(ulnu-u)=dx/xd(lnu)/(lnu-1)=dx/x积分:ln|lnu-1|=ln|x|+C

ln(y-x)=lny-lnx?

lny-lnx=ln(y/x)再问:那ln[sin(x/2)+1-2*((sinx)^2)]=?你知道吗?再答:确定是sin(x/2)再问:有步骤吗,谢谢你啊~~~再答:ln[sin(x/2)+1-2

解dy/dx=y/[2(lny-x)]这个微分方程

dy/dx=y/[2(lny-x)]2lnydy-xdy=ydxlny^2dy=2xdy+ydxylny^2dy=2xydy+y^2dx1/2lny^2dy^2=d(xy^2)1/2d(y^2lny^

求方程xy′=yln(y/x)的通解

令y=xu则y'=u+xu'代入原方程:x(u+xu')=xulnuxu'=u(lnu-1)du/[u(lnu-1)]=dx/xd(lnu)/(lnu-1)=dx/x积分:ln|lnu-1|=ln|x

(dy/dx)sin x=yln y的通解

∫1/y*1/lnydy=∫1/sinxdxlnlny=∫1/2/[sin(x/2)*cos(x/2)]dxlnlny=ln(sin(x/2))-ln(cos(x/2))+clny=e^c*tan(x

关于d(xy)=xdy+ydx

d(xy)可以理解为xy的一个微小变化量.当x变化微小量dx成为x+dx,y变化微小量dy成为y+dy,所以对应xy(初值)就变化成(x+dx)(y+dy)(末值),变化量即为末值减初值.再问:三年前

求方程xdy+ydx=(Inx/x)dx的通解

xy'+y=lnx/x(xy)'=lnx/x积分:xy=∫lnxdx/xxy=∫lnxd(lnx)即:xy=1/2*ln²x+C

求函数微分dy:y=x+lny

两边微分,dy=dx+1/y*dy所以dy=y/(y-1)*dx注结果里面可以有y,只有这种做法的.放心吧.再问:结果里面也可以有y?可以么,真的可以么。确定可以么。好吧,我相信你了,可以!yyyyy

求由方程ye^x+lny=1所确定的隐函数y=y(x)的二阶导数(d^2y)/(dx^2)

两边x求导得y'e^x+ye^x+y'/y=0y'=-ye^x/(e^x+1/y)=-y^2e^x/(ye^x+1)y''=[(-2yy'e^x-y^2e^x)(ye^x+1)+y^2e^x(y'e^

(xdy+ydx)/(x^2+y^2)在x^2+y^2>0的D平面线路径积分,为什么和路径无关呀,不是单连通区域呀!

由于不是单连通区域,因此不能说积分与路径无关,对于任意的两条路径,要看原点是否在这两条路径所围区域内,如果原点不在其内,则与路径无关;如果原点在这个区域内,积分与路径是有关的.你所说的x²+

ydx+(x-y^3)dy=0

是电脑编程语言、表示“几次方”、如5^6.表示5的6次方、再问:i-3j+5k是怎么得的

微分函数: ylny dx + (x-lny)dy=0

∵ylnydx+(x-lny)dy=0∴ylnydx/dy+x=lny.(1)∴原方程与方程(1)同解用常数变易法求解方程(1)∵ylnydx/dy+x=0==>dx/x=-dy/(ylny)==>d

这个微分方程咋解:ylnydx+(x-lny)dy=0,

先求ylnydx+xdy=0通解,它的通解是x=C/lny(C是常数).再求原方程通解,根据x=C/lny,设原方程通解为x=C(y)/lny.==>C'(y)=lny/y==>C(y)=ln&sup

解微分方程 y lny dx-x lnx dy=0

dy/(ylny)=dx/(xlnx)lnlny=lnlnx+C1lny=Clnx(C>0)y=x^C

求微分方程Xdy-Ydx=X/lnx*dx的通解

xdy-ydx=x^2*(xdy-ydx)/x^2=x^2*d(y/x)左右2边都除以x^2即变为:d(y/x)=1/(x*lnx)dxy/x=ln(lnx)+Cy=xln(lnx)+Cx

求解微分方程 2ydx+(y^3-x)dy=0

2ydx+(y^3-x)dy=0dx/dy-(1/2y)x=-y^2/2,这是一阶线性方程,由通解公式:e^∫(1/2y)dy=√yx=√y(C+∫[(-y^2/2)/√y]dy)=√y(C-(1/5

下列微分方程是一阶线性微分方程的是() A.y'=siny.B.yy'=1.C.y'=x^2+y^2.D.ydx+(x-

定义:形如y'+P(x)y=Q(x)的微分方程称为一阶线性微分方程,Q(x)称为自由项.(这里所谓的一阶,指的是方程中关于Y的导数是一阶导数.)∵ydx+(x-lny)dy=0==>ydx/dy+x=

x*dy/dx=y(lny-lnx) 的通解

设y=uxdy/dx=u+xdu/dxulnu=xdu/dx+udu/u(lnu-1)=dx/xlnu-1=cxu=e^(cx+1)y=xe^(cx+1)

lnx-lny等于ln(x/y)吗

lnx-lny等于ln(x/y)lnx+lny等于ln(x*y)