y=x²cos(2x-π 3)求导数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 17:57:04
y=x²cos(2x-π 3)求导数
求函数y=2cos(x+π4)cos(x−π4)+3sin2x

y=2cos(x+π4)cos(x−π4)+3sin2x=2(12cos2x−12sin2x)+3sin2x=cos2x+3sin2x=2sin(2x+π6)∴函数y=2cos(x+π4)cos(x−

求下列函数的导数:y=x-sin x/2 cos x/2 y=x^3+3^x

y=x-sinx/2cosx/2y=x-sin(x/2)cos(x/2)=x-(1/2)sinxdy/dx=1-(1/2)cosxy=x^3+3^xy=x^3+3^x,y'=3x^2+3^xln3

求多元函数极值f(x,y)=sinx+cosy+cos(x-y),0≤x,y≤π/2

极值就是求导fx=cosx-sin(x-y)=0fy=-siny+sin(x-y)=0x+y=pi/2f(x,y)=1+0+0=1极小值这是f(x,y)

求微分 y=ln(1-x^2) y=e^-x +cos(3+x) y=sin2x

-((2x)/(1-x^2))dx;(-E^-x-Sin[3+x])dx;2Cos[2x]dx

问道三角函数题已知sin(x)-sin(y)=-(2/3);cos(x)-cos(y)=(2/3);求cos(x-y)

5/9cos(x-y)=cosx*cosy+sinx*sinysin(x)-sin(y)=-(2/3),两边平方得到sin^2x-2sinxsiny+sin^2y=4/9cos(x)-cos(y)=(

已知函数y=(sin x+ cos x)(sin x+cos x)+2cos x*cos x ,求它的递减区间

整理方程,得y=1+2sinxcosx+2(cosx)^2利用降幂公式和二倍角公式,得y=sin2x+cos2x+2再利用辅助角公式,得y=根号2*sin(2x+π/4)+2所以当2x+π/4属于[2

求函数f(x,y)=sinx+cosy+cos(x-y),0≤x,y≤π/2的极值

思路:利用极值和导数的关系(极值点,导数为0)函数关于x,y求偏导数,令其为0,解出x,y的值,和相应的函数值,那就是极值

求函数y=cosx+cos(x-π3

∵y=cosx+cos(x-π3)=cosx+cosxcosπ3+sinxsinπ3=32cosx+32sinx=3(cosπ6cosx+sinπ6sinx)=3cos(x-π6),∵-1≤cos(x

求下列函数导数y=cos(π/3-x)y=e^3xy=In(3-x)y=cos^3(1-2x)

y=cos(π/3-x)y'=-sin(π/3-x)*(-1)=sin(π/3-x)y=e^3xy'=e^(3x)*3=3e^(3x)y=In(3-x)y'=1/(3-x)*(-1)=1/(x-3)y

y =(cos^2) x - sin (3^x),求y'

y'=(cos²x)'-(sin3^x)'=2cosx·(cosx)'-cos3^x·(3^x)'=2cosx·(-sinx)-cos3^x·(3^x·ln3)=-sin2x-ln3·cos

求函数y= cos^2x+ sinx (| x |

y=cos^2x+sinx=1-2(sinx)^2+sinx=-2(sinx-1/4)^2+9/8因为|x|

sin(x+y)sin(x-y)=k,求cos^2x-cos^2y

-2k=cos2x-cos2y=[2(cosx)^2-1]-[2(cosy)^2-1]=2[(cosx)^2-(cosy)^2]cos^2x-cos^2y=-k

Sin x-sin y=2/3 cos x-cos y=1/2 求cos(x-y)

Sinx-siny=2/3cosx-cosy=1/2分别平方得(Sinx-siny)^2=(2/3)^2(cosx-cosy)^2=(1/2)^2展开相加得-2cos(x-y)+2=4/9+1/4-2

求y=sin(2x+π/3)+cos(2x-π/6)的单调区间

y=sin(2x+π/3)+cos(2x-π/6)=(1/2)sin2x+(√3/2)cos2x+(√3/2)cos2x+(1/2)sin2x=sin2x+√3cos2x=2sin(2x+π/3)2k

1.y=cos^4x+sin^4x 求周期 2.y=(sin2x+sin(2x+π/3))/( cos2x+cos(2x

1、y=(cos^2x+sin^2x)^2-2cos^2xsin^2x=1-1/2(sin2x)^2=1-1/4(1-cos4x)=3/4+1/4cos4x周期T=2pi/4=pi/22、y=(根3/

求函数最大值最小值及对应x的集合 y=cos(x/2+π/3)

cos值域是【-1,1】,所以y最大1,最小-1y=1时,x/2+π/3=2kπ+π/2x=4kπ+π/3同理,y=-1时,x=4kπ-5π/3综上,x∈{x|x=4kπ+π/3,k∈Z},y最大=1

y=cos(x-π/3) y=cos(x-π/3) 求这两个三角函数的奇偶性

y=cos(x-π/3)=cosx*cosπ/3+sinxsinπ/3y=cos(-x-π/3)=cos-x*cosπ/3+sin-xsinπ/3=cosx*cosπ/3-sinxsinπ/3非奇非偶

y=cos(π/3-x)cos[π/2(x-1)]判断奇偶性

f(π/3)=f(-π/3)偶函数!再问:要证明啊这种办法只能用来验证是否是吧。。。。求证明的过程再答:f(a)=cos(π/3-a)cos(π/3+a)f(-a)=cos(π/3+a)cos(π/3

cos(2x+y)=3cosy,求tanx*tan(x+y)

cos(2x+y)=3cosycos(x+y+x)=3cos(x+y-x)cos(x+y)cosx-sin(x+y)sinx=3[cos(x+y)cosx+sin(x+y)sinx]2cos(x+y)

求值域y=2sinx+cos^2x,x∈[π/6,2π/3)

y=2sinx+cos^2x=2sinx+1-sin²x=-(sinx-1)²+2已知x∈[π/6,2π/3),那么:sinx∈[1/2,1]所以当sinx=1即x=π/2时,函数