y=x*cosx是否为x趋向于正无穷时的无穷大
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 15:17:28
因为ln(cosx)在点x=π/4连续,所以limln(cosx)(x趋于π/4)=ln(cosπ/4)=ln(√2/2)=-ln2/2
原式=lim(x→0){[1+(cosx-1)]^[(1/(cosx-1))(-1)]}=1/lim(x→0){[1+(cosx-1)]^(1/(cosx-1))}=1/lim(t→0)[(1+t)^
1楼根本性错误:有界函数乘无界函数还是无界函数?那y=1/x与y=x乘积呢?LZ的问题其实很好解决,反证法.假设x-->∞时y有界|y|n时,||y|-N|n,且||y(x0)|-N|2π>ε,由此知
|cosx|≤1lim(x->∞)e^(-x^2).cosx=0再问:������ϸ����再答:|cosx|��10��e^(-x^2).cosx��e^(-x^2)0��lim(x->��)e^(
lim(x->0)1-√cosx/xsinx=lim(x->0)1-√cosx/x²=lim(x->0)(1-√cosx)(1+√cosx)/(1+√cosx)x²=lim(x->
你看看洛必达法则,你这题分子分母极限都趋于0,同时求导极限不变,求导后又是0/0型还可以用洛必达法则再问:我还没学这个法则再答:无穷小的等价代换学过吧
当X趋向于0时可以发现sinx趋向于0分子((cos(sinx)-cosx)趋向为cos0-cos0,分母4X也趋向于0这种0/0型的多项式求极限需要用分子分母同时对x求导数的方法sin求导为cosc
倍角公式:cosx=1-2[sin(x/2)]^2故1-cosx=2[sin(x/2)]^2于是limx->0(1-cosx)/x^2=limx->02[sin(x/2)]^2/x^2=limx->0
cosx震荡而有界,也就是,在小范围内它是震荡的,但是把它放到一个大背景下,又体现出它在【-1,1】的有界性.比如x-∞,cosx是-1和1之间震荡的,极限不存在.x-∞cosx/xcosx虽然震荡,
原式=lim(x->0){[1+(cosx-1)]^[(1/(cosx-1))(-1)]}=1/lim(x->0){[1+(cosx-1)]^(1/(cosx-1))}=1/lim(t->0)[(1+
楼上TEX都弄出来了!因为当x趋向于0时,sin(1/x)是一个有界量,而x是无穷小量,无穷小量与有界量的积仍是无穷小量,所以lim(x-->0)xsin(1/x)=0
这个函数是无界的.当X→+无穷,函数无穷大,因为cosx是有界,但X无界,所以它们的乘积也是无穷.再问:有界无界要不要证明啊再答:这个证明貌似不太会写。
x-->01-cosx~1/2X^2所以结果就是lim(x-->0+)x/√1/2x^2=√2再问:能详细点吗,中间的过程什么的,谢谢了再答:中间过程就是这个无穷小替换x-->01-cosx~1/2x
1/cosx是发散的,因此这个极限是不存在的.
lim(x趋向于0)(cosx)^[1/(xsinx)]=lim(x趋向于0)[(1+cosx-1)^(1/(cosx-1))]^[(cosx-1)/(xsinx)]=lim(x趋向于0)e^[(co
0/0型求导limf/g=limf'/g'lim(1-cosx)/x2=lim(1-cosx)'/(x^2)'=lim(sinx)/2x=lim(sinx)'/(2x)'=lim(cosx/2)=1/
1啊这是个连续函数所以x趋向于零时的极限等于函数值cos0=1所以极限为一
y=1/x+2/x/x=1/x+2x→0则1/x→∞所以1/x+2→∞所以y→∞
(cosx-1)/sinx=[1-2sin^2(x/2)-1]/[2sin(x/2)cos(x/2)]=-sin(x/2)/cos(x/2)=-tan(x/2)因为limx趋向于0时tanx∽x所以原