y=tf(x^2-t^2)dt

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:20:12
y=tf(x^2-t^2)dt
设f(t)=∫e^(-x^2)dx,求∫tf(t)dt=?

letdF(x)=e^(-x^2)dxf(t)=∫(1->t^2)e^(-x^2)dx=F(t^2)-F(1)f'(t)=2tF'(t^2)=2te^(-t^4)∫(0->1)tf(t)dt=(1/2

设f(x)连续,d/dx∫上标x下标0tf(x^2-t^2)dt=?

找你这道题找得我好辛苦啊!解法一:换元法!令u=x∧2-t∧2,则t=√(x∧2-u)当t=0时,u=x∧2,当t=x时,u=0.且dt=(-1)/2√(x∧2-u)∴原式=∫f(u)*√(x∧2-u

已知tf(2x-t)dt(0,x)的不定积分,且f(1)=1,求f(x)dx(1,2)的不定积分

F(x)=∫(0,x)tf(2x-t)dt(2x-t=u)=∫(2x,x)(2x-u)f(u)d(-u)=∫(x,2x)(2x-u)f(u)du=2x∫(x,2x)f(u)du-∫(x,2x)uf(u

设函数f(x)可导,且满足f(x)=1+2x+∫(上限x下限0)tf(t)dt-x∫(上限x下限0)f(t)dt,试求函

答:f(x)=2sinx+cosxf(x)=1+2x+∫(0~x)tf(t)dt-x∫(0~x)f(t)dt...(1)f'(x)=2+xf(x)-[∫(0~x)f(t)dt+xf(x)]f'(x)=

如图.令x=e^t,为什么y''x^2=(d^2y)/(dt^2)-dy/dt?

dy/dx=(dy/dt)*(dt/dx)=1/e^t*(dy/dt)d^2y/dx^2={d[1/e^t*(dy/dt)]/dt}*(dt/dx)=(1/e^t)*(d^2y/dt^2-dy/dt)

设f(x)连续,Y=∫0~X tf(x^2-t^2)dt 则dy/dx=?

y=∫[0,x]tf(x²-t²)dt令u=x²-t²,du=-2tdt当t=0,u=x²;当t=x,u=0y=∫[x²,0]tf(u)*d

变限积分求导问题 ∫tf(x^2-t^2)dt 上限x,下限0.设x^2-t^2=u,怎么得到-1/2∫f(u)du 上

这道题考察的是定积分的第二类换元法,要点是换元要换限详细过程请见下图

关于微分方程与定积分的题目,求可导函数f(x),使得∫[x,0]f(t)dt=x+∫[x,0]tf(x-t)dt

x和0谁是上限谁是下限啊,我当作x是上限,0是下限等式右边的那个积分需要先换元,令x-t=u,则dt=-du,t从0变到x,则u从x变到0那个积分可化为:-∫[0,x](x-u)f(u)du=x∫[x

积分tf(x-t)dt求导

t=x-udt=d(x-u)=-du没错应该是dt=-du再问:����-du����׵���������Ǹ��ģ��ο���������ġ�再答:Ӧ���Ǹ��ġ������

高数的变上限积分怎么做0到X,xf(t)dt - 0到X,tf(t)dt=1-cosx.求0到2分之π,f(x)dx=多

解析:原式=∫(0,x)xf(t)dt-∫(0,x)tf(t)dt=1-cosx即:x∫(0,x)f(t)dt-∫(0,x)tf(t)dt=1-cosx.两端对x求导,得∫(0,x)f(t)dt+xf

定积分∫[a,x]tf(t)dt导数怎么求?答案是xf(x)-1/2∫[a,x]tf(t)dt

你这题目有问题∫[a,x]tf(t)dt的导数就是xf(x)再问:∫[0,x]tf(t)dt的积分才是xf(x),但是现在下线不是0,是a.再答:你去看看莱布尼兹公式,下限时任意常数再问:我知道莱布尼

设f(x)为可导函数,且满足∫(上限为x下限为0)tf(t)dt=x^2+f(x),求f(x)

/>∫(0→x)tf(t)dt=x^2+f(x)两边同时对x求导得xf(x)=2x+f'(x)xy=2x+y'dy/dx=x(y-2)dy/(y-2)=xdx两端积分得ln|y-2|=x²/

设函数z=∫tf(x^2+y^2-t^2)dt,其中函数f(x)有连续的导数,求∂^2z/∂x&

z=∫[0---->√(x²+y²)]tf(x²+y²-t²)dt令x²+y²-t²=u²,两边微分得:tdt

定积分∫tf(x-t)dt(0到x)=1-cosx,则∫f(x)dx(0到π/2)

连点分也不给,不过做出来了就写给你吧~

17,设f(x)为可导函数,且满足∫0到x tf(t)dt=f(x)+x^2 求f(x)

∫[0→x]tƒ(t)dt=ƒ(x)+x²、两边求导xƒ(x)=ƒ'(x)+2x-->xy=y'+2xdy/dx=xy-2x=x(y-2)dy/(y-

∫ 0到x tf(x-t)dt=∫ 0到x (x-t)f(t)dt 为什么?

令u=x-t0≤t≤xt=x-u则∫0到xtf(x-t)dt=∫x到0(x-u)f(u)d(x-u)=∫x到0(u-x)f(u)du=∫0到x(x-u)f(u)du与积分变量无关,所以∫0到xtf(x

y= ∫[0,x](t-1)^3(t-2)dt,dy/dx(x=0)

y=∫(t-1)^3(t-2)dt,dy/dx=(x-1)^3(x-2).