y=tf(x^2-t^2)dt
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:20:12
letdF(x)=e^(-x^2)dxf(t)=∫(1->t^2)e^(-x^2)dx=F(t^2)-F(1)f'(t)=2tF'(t^2)=2te^(-t^4)∫(0->1)tf(t)dt=(1/2
找你这道题找得我好辛苦啊!解法一:换元法!令u=x∧2-t∧2,则t=√(x∧2-u)当t=0时,u=x∧2,当t=x时,u=0.且dt=(-1)/2√(x∧2-u)∴原式=∫f(u)*√(x∧2-u
F(x)=∫(0,x)tf(2x-t)dt(2x-t=u)=∫(2x,x)(2x-u)f(u)d(-u)=∫(x,2x)(2x-u)f(u)du=2x∫(x,2x)f(u)du-∫(x,2x)uf(u
两边求导啊,然后化成线性微分方程啊
答:f(x)=2sinx+cosxf(x)=1+2x+∫(0~x)tf(t)dt-x∫(0~x)f(t)dt...(1)f'(x)=2+xf(x)-[∫(0~x)f(t)dt+xf(x)]f'(x)=
dy/dx=(dy/dt)*(dt/dx)=1/e^t*(dy/dt)d^2y/dx^2={d[1/e^t*(dy/dt)]/dt}*(dt/dx)=(1/e^t)*(d^2y/dt^2-dy/dt)
y=∫[0,x]tf(x²-t²)dt令u=x²-t²,du=-2tdt当t=0,u=x²;当t=x,u=0y=∫[x²,0]tf(u)*d
这道题考察的是定积分的第二类换元法,要点是换元要换限详细过程请见下图
x和0谁是上限谁是下限啊,我当作x是上限,0是下限等式右边的那个积分需要先换元,令x-t=u,则dt=-du,t从0变到x,则u从x变到0那个积分可化为:-∫[0,x](x-u)f(u)du=x∫[x
t=x-udt=d(x-u)=-du没错应该是dt=-du再问:����-du�������������Ǹ��ģ��ο���������ġ�再答:Ӧ���Ǹ��ġ������
解析:原式=∫(0,x)xf(t)dt-∫(0,x)tf(t)dt=1-cosx即:x∫(0,x)f(t)dt-∫(0,x)tf(t)dt=1-cosx.两端对x求导,得∫(0,x)f(t)dt+xf
你这题目有问题∫[a,x]tf(t)dt的导数就是xf(x)再问:∫[0,x]tf(t)dt的积分才是xf(x),但是现在下线不是0,是a.再答:你去看看莱布尼兹公式,下限时任意常数再问:我知道莱布尼
/>∫(0→x)tf(t)dt=x^2+f(x)两边同时对x求导得xf(x)=2x+f'(x)xy=2x+y'dy/dx=x(y-2)dy/(y-2)=xdx两端积分得ln|y-2|=x²/
z=∫[0---->√(x²+y²)]tf(x²+y²-t²)dt令x²+y²-t²=u²,两边微分得:tdt
连点分也不给,不过做出来了就写给你吧~
∫[0→x]tƒ(t)dt=ƒ(x)+x²、两边求导xƒ(x)=ƒ'(x)+2x-->xy=y'+2xdy/dx=xy-2x=x(y-2)dy/(y-
令u=x-t0≤t≤xt=x-u则∫0到xtf(x-t)dt=∫x到0(x-u)f(u)d(x-u)=∫x到0(u-x)f(u)du=∫0到x(x-u)f(u)du与积分变量无关,所以∫0到xtf(x
y=∫(t-1)^3(t-2)dt,dy/dx=(x-1)^3(x-2).