y=sin²(2x-兀/3)求导
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 09:56:44
函数的周期T=2πω=2π2=π,由-π2+2kπ≤2x+π3≤π2+2kπ,解得−5π12+kπ≤x≤π12+kπ,即函数的递增区间为[−5π12+kπ,π12+kπ],k∈Z,由2x+π3=π2+
∵y=sin(2x+π3),∴由2kπ−π2≤2x+π3≤2kπ+π2,k∈Z.得kπ-5π12≤x≤kπ+π12,k∈Z.∴当k=0时,递增区间为[0,π12],当k=1时,递增区间为[7π12,π
sin(x^2+y^2)=x两边同时求导,得(x^2+y^2)'cos(x^2+y^2)=dx(2xdx+2ydy)cos(x^2+y^2)=dx2xdx+2ydy=dx/cos(x^2+y^2)2y
y'=2xsin4x-x²cos4x·4所以dy=(2xsin4x-4x²cos4x)dxy=ln√4+t²=1/2ln(4+t²)y'=1/2·1/(4+t&
x=sin(y/x)+e^2求dy/dxd(x)=d(sin(y/x)+e^2)dx=dsin(y/x)+de^2dx=cos(y/x)d(y/x)dx=cos(y/x)(xdy-ydx)/x^2x^
y'=(cos²x)'-(sin3^x)'=2cosx·(cosx)'-cos3^x·(3^x)'=2cosx·(-sinx)-cos3^x·(3^x·ln3)=-sin2x-ln3·cos
sin^2x+cos^2y=1/2∴sin^2x=1/2-cos^2y3sin^2x+sin^2y=3(1/2-cos^2y)+sin^2y=1.5-3cos^2y)+sin^2y又有sin^2y+c
dy=2sin[x(x+1)]cos[x(x+1)](2x+1)
y∈[1,3]当y=1时,sin(x+π/3)=-1,x+π/3=2kπ-π/2,x=kπ-5π/12,k∈Z当y=3时,sin(x+π/3)=1,x+π/3=2kπ+π/2,x=kπ+π/12,k∈
y=sin(x+π/3)sin(x+π/2)=sin(x+π/3)cosx=(sinxcosπ/3+cosxsinπ/3)cosx=1/2sinxcosx+√3/2cos^2(x)[cos^2(x)指
-2k=cos2x-cos2y=[2(cosx)^2-1]-[2(cosy)^2-1]=2[(cosx)^2-(cosy)^2]cos^2x-cos^2y=-k
Sinx-siny=2/3cosx-cosy=1/2分别平方得(Sinx-siny)^2=(2/3)^2(cosx-cosy)^2=(1/2)^2展开相加得-2cos(x-y)+2=4/9+1/4-2
(1)当y=C时,sin[(x+C)/2]=sin[(x-C)/2]移项,和差化积有2cos{[(x+C)/2+(x-C)/2]/2}sin{[(x+C)/2-(x-C)/2]/2}=0,即cos(x
sin(x+2y)=3sinx,sin[(x+y)+y]=3sin[(x+y)-y],sin(x+y)cos(y)+cos(x+y)sin(y)=3[sin(x+y)cos(y)-cos(x+y)si
y=sin平方(2x-3)=(1-cos(4x-6))/2=0.5-0.5cos(2x-3)y'=2sin(2x-3)*cos(2x-3)*2=4sin(2x-3)*cos(2x-3)楼主,给分.
y'=2e^2xcos(e^2x)把y看成复合函数sint,t=e^m,m=2x.复合函数求导,等于三个分别求导的积
dy/d(x^3)=(dy/dx)/(d(x^3)/dx)=cosx/3(x^2)