y=lnx上哪点的曲率半径最小
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 21:53:12
(1+y'^2)^(3/2)/y''=150因为曲率半径相同的曲线很多,下面取一特解如果y'=(-x/y)y''=-1/y+xy'/y^2=-1/y+(-x^2/y^3)=(-1/y)(1+x^2/y
clearallclcsymsx;f=(-5.324e-15*x^7)+(-8.452e-12*x^6)+(-5.204e-9*x^5)+(-1.558e-6*x^4)+(-0.0002253*x^3
y'=1/x(x>0)y''=-1/x^2(x>0)ρ=1/K,曲率半径ρ越小,曲率K越大K=|y''/(1+y'^2)^(3/2)|=|-1/x^2/(1+1/x^2)^(3/2)|=x/(x^2+
怎样求取率半径是由公式的,《高等数学》上册有,这里不好打字.根据公式算出后,用求导算最值的知识点,就可以解决这个问题了.
y=lnxy'=1/xy''=-x^(-2)曲率半径公式ρ=[(1+y'^2)^(3/2)]/∣y"∣=(1+(1/x)^2)^(3/2)/(x^(-2))=x^2*(1+x^(-2))^(3/2)对
曲率公式:K=y''/[(1+y'^2)^(3/2)],曲率半径等于曲率的倒数.嗯,就是的,就是的,.
y'=2X,y''=2.曲率K=│y''/(1+y'^2)^(3/2)│曲率半径:p=1/K=│(1+4x^2)^(3/2)│/2
曲率K=|y〃|/√[(1+y′^2)^3]={√[(x^2+1)^3]}/|x|^5曲率半径a=1/K=(|x|^5)/{√[(x^2+1)^3]}易得在x=0处a最小但x∈(0,+∞)且有a→0,
用曲率公式求解结果如下:曲率为2,曲率半径是曲率的倒数1/2具体的计算公式不好编辑上来,你在网上搜一下就有计算公式
根号二分之一对曲率求导得驻点即可
y=lnx,y'=1/x,y''=-1/x^2曲率k=abs(y'')/(1+y'^2)^(3/2)曲率最大的点dk/dx=0-->x=2^(1/2)/2曲率半径r=1/k=3*(3)^(1/2)/2
y'=secx·tanx/secx=tanxy''=(tanx)'=sec²x代入曲率公式:K=|y''|/(1+y'²)^(3/2)得K=(sec²x)/(1+tan&
切点在(1,0)y'=1/xy'(1)=1y''=-1/x^2y''(1)=-1K=|y'/(1+y''^2)^(3/2)|=1/2^(3/2)R=1/K=2^(3/2)切线斜率1,切点法线斜率-1.
先说说曲线的曲率.平面曲线的曲率就是是针对曲线上某个点的切线方向角对弧长的转动率,通过微分来定义,表明曲线偏离直线的程度.K=lim|Δα/Δs|Δs趋向于0的时候,定义k就是曲率.曲率的倒数就是曲率
把曲率半径表示出来就可以求了啊再问:如何表示?再答:
曲面通常按照参数(u,v)进行描述.取其上任意一点,过这一点,可以找到N条曲线,同时在曲面上.不同曲线在这一点的曲率通常是不一样的(除了球面),总是存在这样的两条曲线,他们在这一点的曲率一个是最大的K
曲线上两个相邻无穷近的点,它们的切线的垂线相交到一点,这个点到这个两点中任意一点的长度,这就是曲率半径的定义.
答:曲率半径公式:R=(1+y'^2)^(3/2)/|y''|y=e^x,y'=y''=e^x所以R=(1+e^(2x))^(3/2)/e^x要求R的极值,即求R'R'=3e^x(1+e^(2x))^